Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnclre Structured version   Visualization version   GIF version

Theorem sgnclre 32815
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgnclre (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)

Proof of Theorem sgnclre
StepHypRef Expression
1 neg1rr 12111 . . 3 -1 ∈ ℝ
2 0re 11114 . . 3 0 ∈ ℝ
3 1re 11112 . . 3 1 ∈ ℝ
4 tpssi 4787 . . 3 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ)
51, 2, 3, 4mp3an 1463 . 2 {-1, 0, 1} ⊆ ℝ
6 rexr 11158 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 sgncl 32814 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
86, 7syl 17 . 2 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ {-1, 0, 1})
95, 8sselid 3927 1 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897  {ctp 4577  cfv 6481  cr 11005  0cc0 11006  1c1 11007  *cxr 11145  -cneg 11345  sgncsgn 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-sub 11346  df-neg 11347  df-sgn 14994
This theorem is referenced by:  sgnmul  32818  sgnmulrp2  32819  signstf0  34581  signstfvneq0  34585  signsvfn  34595  signsvfpn  34598  signsvfnn  34599
  Copyright terms: Public domain W3C validator