![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnclre | Structured version Visualization version GIF version |
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
sgnclre | ⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1rr 12331 | . . 3 ⊢ -1 ∈ ℝ | |
2 | 0re 11220 | . . 3 ⊢ 0 ∈ ℝ | |
3 | 1re 11218 | . . 3 ⊢ 1 ∈ ℝ | |
4 | tpssi 4838 | . . 3 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
5 | 1, 2, 3, 4 | mp3an 1459 | . 2 ⊢ {-1, 0, 1} ⊆ ℝ |
6 | rexr 11264 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
7 | sgncl 33835 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ {-1, 0, 1}) |
9 | 5, 8 | sselid 3979 | 1 ⊢ (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3947 {ctp 4631 ‘cfv 6542 ℝcr 11111 0cc0 11112 1c1 11113 ℝ*cxr 11251 -cneg 11449 sgncsgn 15037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-sub 11450 df-neg 11451 df-sgn 15038 |
This theorem is referenced by: sgnmul 33839 sgnmulrp2 33840 signstf0 33877 signstfvneq0 33881 signsvfn 33891 signsvfpn 33894 signsvfnn 33895 |
Copyright terms: Public domain | W3C validator |