Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnclre Structured version   Visualization version   GIF version

Theorem sgnclre 33836
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgnclre (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)

Proof of Theorem sgnclre
StepHypRef Expression
1 neg1rr 12331 . . 3 -1 ∈ ℝ
2 0re 11220 . . 3 0 ∈ ℝ
3 1re 11218 . . 3 1 ∈ ℝ
4 tpssi 4838 . . 3 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ)
51, 2, 3, 4mp3an 1459 . 2 {-1, 0, 1} ⊆ ℝ
6 rexr 11264 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 sgncl 33835 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
86, 7syl 17 . 2 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ {-1, 0, 1})
95, 8sselid 3979 1 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  wss 3947  {ctp 4631  cfv 6542  cr 11111  0cc0 11112  1c1 11113  *cxr 11251  -cneg 11449  sgncsgn 15037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-sub 11450  df-neg 11451  df-sgn 15038
This theorem is referenced by:  sgnmul  33839  sgnmulrp2  33840  signstf0  33877  signstfvneq0  33881  signsvfn  33891  signsvfpn  33894  signsvfnn  33895
  Copyright terms: Public domain W3C validator