Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem46 Structured version   Visualization version   GIF version

Theorem fourierdlem46 44868
Description: The function 𝐹 has a limit at the bounds of every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem46.cn (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
fourierdlem46.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem46.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem46.qiso (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
fourierdlem46.qf (𝜑𝑄:(0...𝑀)⟶𝐻)
fourierdlem46.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem46.10 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
fourierdlem46.qiss (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
fourierdlem46.c (𝜑𝐶 ∈ ℝ)
fourierdlem46.h 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
fourierdlem46.ranq (𝜑 → ran 𝑄 = 𝐻)
Assertion
Ref Expression
fourierdlem46 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem fourierdlem46
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem46.h . . . . . . . . 9 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
2 pire 25968 . . . . . . . . . . . . 13 π ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
43renegcld 11641 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
5 fourierdlem46.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 tpssi 4840 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆ ℝ)
74, 3, 5, 6syl3anc 1372 . . . . . . . . . 10 (𝜑 → {-π, π, 𝐶} ⊆ ℝ)
84, 3iccssred 13411 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
98ssdifssd 4143 . . . . . . . . . 10 (𝜑 → ((-π[,]π) ∖ dom 𝐹) ⊆ ℝ)
107, 9unssd 4187 . . . . . . . . 9 (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) ⊆ ℝ)
111, 10eqsstrid 4031 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
12 fourierdlem46.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶𝐻)
13 fourierdlem46.i . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑀))
14 elfzofz 13648 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
1513, 14syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (0...𝑀))
1612, 15ffvelcdmd 7088 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ 𝐻)
1711, 16sseldd 3984 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ ℝ)
1817adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
19 fzofzp1 13729 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
2013, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
2112, 20ffvelcdmd 7088 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻)
2211, 21sseldd 3984 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
2322rexrd 11264 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2423adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
25 fourierdlem46.10 . . . . . . 7 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
2625adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
27 simpr 486 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 = (𝑄𝐼))
28 simpl 484 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ dom 𝐹)
2927, 28eqeltrd 2834 . . . . . . . . . . . 12 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3029adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3130adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
32 ssun2 4174 . . . . . . . . . . . . . . . . . . 19 ((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
3332, 1sseqtrri 4020 . . . . . . . . . . . . . . . . . 18 ((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻
34 fourierdlem46.qiss . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
35 ioossicc 13410 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)π) ⊆ (-π[,]π)
3634, 35sstrdi 3995 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π[,]π))
3736sselda 3983 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π))
3837adantr 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
39 simpr 486 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
4038, 39eldifd 3960 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹))
4133, 40sselid 3981 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥𝐻)
42 fourierdlem46.ranq . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝑄 = 𝐻)
4342eqcomd 2739 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ran 𝑄)
4443ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄)
4541, 44eleqtrd 2836 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄)
46 simpr 486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
47 ffn 6718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
4812, 47syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 Fn (0...𝑀))
4948adantr 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
50 fvelrnb 6953 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5246, 51mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
5352adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
54 elfzelz 13501 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
5554ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ ℤ)
56 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝜑)
57 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀))
58 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) = 𝑥)
59 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6058, 59eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6160adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
62 elfzoelz 13632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
6313, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐼 ∈ ℤ)
6463ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ)
6517rexrd 11264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑄𝐼) ∈ ℝ*)
6665ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
6723ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
68 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
69 ioogtlb 44208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
7066, 67, 68, 69syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
71 fourierdlem46.qiso . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
7271ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
7315ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀))
74 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀))
75 isorel 7323 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7672, 73, 74, 75syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7770, 76mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗)
78 iooltub 44223 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
7966, 67, 68, 78syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
8020ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀))
81 isorel 7323 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8272, 74, 80, 81syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8379, 82mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1))
84 btwnnz 12638 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ)
8564, 77, 83, 84syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ)
8656, 57, 61, 85syl21anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8786adantllr 718 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8855, 87pm2.65da 816 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄𝑗) = 𝑥)
8988nrexdv 3150 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
9053, 89pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄)
9190adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄)
9245, 91condan 817 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
9392ralrimiva 3147 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
94 dfss3 3971 . . . . . . . . . . . . . 14 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
9593, 94sylibr 233 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9695ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9765ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ*)
9823ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
99 icossre 13405 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
10017, 23, 99syl2anc 585 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
101100sselda 3983 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
102101adantr 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ℝ)
10317ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ)
10465adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
10523adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
106 simpr 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
107 icogelb 13375 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
108104, 105, 106, 107syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
109108adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ≤ 𝑥)
110 neqne 2949 . . . . . . . . . . . . . . 15 𝑥 = (𝑄𝐼) → 𝑥 ≠ (𝑄𝐼))
111110adantl 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ≠ (𝑄𝐼))
112103, 102, 109, 111leneltd 11368 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) < 𝑥)
113 icoltub 44221 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
114104, 105, 106, 113syl3anc 1372 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
115114adantr 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1)))
11697, 98, 102, 112, 115eliood 44211 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
11796, 116sseldd 3984 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
118117adantllr 718 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
11931, 118pm2.61dan 812 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
120119ralrimiva 3147 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
121 dfss3 3971 . . . . . . . 8 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
122120, 121sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
123 fourierdlem46.cn . . . . . . . 8 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
124123adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
125 rescncf 24413 . . . . . . 7 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)))
126122, 124, 125sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))
12718, 24, 26, 126icocncflimc 44605 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) ∈ (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
12817leidd 11780 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ≤ (𝑄𝐼))
12965, 23, 65, 128, 25elicod 13374 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
130 fvres 6911 . . . . . . . 8 ((𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
131129, 130syl 17 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
132131eqcomd 2739 . . . . . 6 (𝜑 → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
133132adantr 482 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
134 ioossico 13415 . . . . . . . . 9 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))
135134a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
136135resabs1d 6013 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
137136eqcomd 2739 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
138137oveq1d 7424 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
139127, 133, 1383eltr4d 2849 . . . 4 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
140139ne0d 4336 . . 3 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
141 pnfxr 11268 . . . . . . . . 9 +∞ ∈ ℝ*
142141a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
14322ltpnfd 13101 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) < +∞)
14423, 142, 143xrltled 13129 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞)
145 iooss2 13360 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
146141, 144, 145sylancr 588 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
147146resabs1d 6013 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
148147oveq1d 7424 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
149148eqcomd 2739 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
150149adantr 482 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
151 limcresi 25402 . . . . 5 ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼))
15217adantr 482 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
153 simpl 484 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → 𝜑)
1542renegcli 11521 . . . . . . . . . . . 12 -π ∈ ℝ
155154rexri 11272 . . . . . . . . . . 11 -π ∈ ℝ*
156155a1i 11 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ*)
1572rexri 11272 . . . . . . . . . . 11 π ∈ ℝ*
158157a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℝ*)
1594, 3, 17, 22, 25, 34fourierdlem10 44833 . . . . . . . . . . 11 (𝜑 → (-π ≤ (𝑄𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π))
160159simpld 496 . . . . . . . . . 10 (𝜑 → -π ≤ (𝑄𝐼))
161159simprd 497 . . . . . . . . . . 11 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π)
16217, 22, 3, 25, 161ltletrd 11374 . . . . . . . . . 10 (𝜑 → (𝑄𝐼) < π)
163156, 158, 65, 160, 162elicod 13374 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ∈ (-π[,)π))
164163adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ (-π[,)π))
165 simpr 486 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ¬ (𝑄𝐼) ∈ dom 𝐹)
166164, 165eldifd 3960 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))
167153, 166jca 513 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
168 eleq1 2822 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
169168anbi2d 630 . . . . . . . 8 (𝑥 = (𝑄𝐼) → ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))))
170 oveq1 7416 . . . . . . . . . . 11 (𝑥 = (𝑄𝐼) → (𝑥(,)+∞) = ((𝑄𝐼)(,)+∞))
171170reseq2d 5982 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄𝐼)(,)+∞)))
172 id 22 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → 𝑥 = (𝑄𝐼))
173171, 172oveq12d 7427 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) = ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)))
174173neeq1d 3001 . . . . . . . 8 (𝑥 = (𝑄𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
175169, 174imbi12d 345 . . . . . . 7 (𝑥 = (𝑄𝐼) → (((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)))
176 fourierdlem46.rlim . . . . . . 7 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
177175, 176vtoclg 3557 . . . . . 6 ((𝑄𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
178152, 167, 177sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)
179 ssn0 4401 . . . . 5 ((((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ∧ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
180151, 178, 179sylancr 588 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
181150, 180eqnetrd 3009 . . 3 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
182140, 181pm2.61dan 812 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
18365adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ*)
18422adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
18525adantr 482 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
186 simpr 486 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1)))
187 simpl 484 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
188186, 187eqeltrd 2834 . . . . . . . . . . . 12 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
189188adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
190189adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
19195ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
19265ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) ∈ ℝ*)
19323ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19465adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
19522adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
196 iocssre 13404 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
197194, 195, 196syl2anc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
198 simpr 486 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
199197, 198sseldd 3984 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
200199adantr 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
20123adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
202 iocgtlb 44215 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
203194, 201, 198, 202syl3anc 1372 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
204203adantr 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) < 𝑥)
20522ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
206 iocleub 44216 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
207194, 201, 198, 206syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
208207adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
209 neqne 2949 . . . . . . . . . . . . . . . 16 𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1)))
210209necomd 2997 . . . . . . . . . . . . . . 15 𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
211210adantl 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
212200, 205, 208, 211leneltd 11368 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1)))
213192, 193, 200, 204, 212eliood 44211 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
214191, 213sseldd 3984 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
215214adantllr 718 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
216190, 215pm2.61dan 812 . . . . . . . . 9 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
217216ralrimiva 3147 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
218 dfss3 3971 . . . . . . . 8 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
219217, 218sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
220123adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
221 rescncf 24413 . . . . . . 7 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)))
222219, 220, 221sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))
223183, 184, 185, 222ioccncflimc 44601 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
22422leidd 11780 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1)))
22565, 23, 23, 25, 224eliocd 44220 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
226 fvres 6911 . . . . . . . . 9 ((𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
227225, 226syl 17 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
228227eqcomd 2739 . . . . . . 7 (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))))
229 ioossioc 44205 . . . . . . . . . . 11 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))
230 resabs1 6012 . . . . . . . . . . 11 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
231229, 230ax-mp 5 . . . . . . . . . 10 ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
232231eqcomi 2742 . . . . . . . . 9 (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
233232oveq1i 7419 . . . . . . . 8 ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
234233a1i 11 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
235228, 234eleq12d 2828 . . . . . 6 (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
236235adantr 482 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
237223, 236mpbird 257 . . . 4 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
238237ne0d 4336 . . 3 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
239 mnfxr 11271 . . . . . . . . 9 -∞ ∈ ℝ*
240239a1i 11 . . . . . . . . . 10 (𝜑 → -∞ ∈ ℝ*)
24117mnfltd 13104 . . . . . . . . . 10 (𝜑 → -∞ < (𝑄𝐼))
242240, 65, 241xrltled 13129 . . . . . . . . 9 (𝜑 → -∞ ≤ (𝑄𝐼))
243 iooss1 13359 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
244239, 242, 243sylancr 588 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
245244resabs1d 6013 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
246245eqcomd 2739 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
247246adantr 482 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
248247oveq1d 7424 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
249 limcresi 25402 . . . . 5 ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
25022adantr 482 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
251 simpl 484 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑)
252155a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈ ℝ*)
253157a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈ ℝ*)
25423adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2554, 17, 22, 160, 25lelttrd 11372 . . . . . . . . . 10 (𝜑 → -π < (𝑄‘(𝐼 + 1)))
256255adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1)))
257161adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π)
258252, 253, 254, 256, 257eliocd 44220 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ (-π(,]π))
259 simpr 486 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
260258, 259eldifd 3960 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))
261251, 260jca 513 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
262 eleq1 2822 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
263262anbi2d 630 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))))
264 oveq2 7417 . . . . . . . . . . 11 (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1))))
265264reseq2d 5982 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))))
266 id 22 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1)))
267265, 266oveq12d 7427 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
268267neeq1d 3001 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
269263, 268imbi12d 345 . . . . . . 7 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)))
270 fourierdlem46.llim . . . . . . 7 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
271269, 270vtoclg 3557 . . . . . 6 ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
272250, 261, 271sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
273 ssn0 4401 . . . . 5 ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
274249, 272, 273sylancr 588 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
275248, 274eqnetrd 3009 . . 3 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
276238, 275pm2.61dan 812 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
277182, 276jca 513 1 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3946  cun 3947  wss 3949  c0 4323  {ctp 4633   class class class wbr 5149  dom cdm 5677  ran crn 5678  cres 5679   Fn wfn 6539  wf 6540  cfv 6544   Isom wiso 6545  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111   + caddc 11113  +∞cpnf 11245  -∞cmnf 11246  *cxr 11247   < clt 11248  cle 11249  -cneg 11445  cz 12558  (,)cioo 13324  (,]cioc 13325  [,)cico 13326  [,]cicc 13327  ...cfz 13484  ..^cfzo 13627  πcpi 16010  cnccncf 24392   lim climc 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-limc 25383  df-dv 25384
This theorem is referenced by:  fourierdlem102  44924  fourierdlem114  44936
  Copyright terms: Public domain W3C validator