| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem46.h |
. . . . . . . . 9
⊢ 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) |
| 2 | | pire 26418 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ |
| 3 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → π ∈
ℝ) |
| 4 | 3 | renegcld 11664 |
. . . . . . . . . . 11
⊢ (𝜑 → -π ∈
ℝ) |
| 5 | | fourierdlem46.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | | tpssi 4814 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆
ℝ) |
| 7 | 4, 3, 5, 6 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → {-π, π, 𝐶} ⊆
ℝ) |
| 8 | 4, 3 | iccssred 13451 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
| 9 | 8 | ssdifssd 4122 |
. . . . . . . . . 10
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐹) ⊆
ℝ) |
| 10 | 7, 9 | unssd 4167 |
. . . . . . . . 9
⊢ (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) ⊆
ℝ) |
| 11 | 1, 10 | eqsstrid 3997 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ⊆ ℝ) |
| 12 | | fourierdlem46.qf |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) |
| 13 | | fourierdlem46.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| 14 | | elfzofz 13692 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 16 | 12, 15 | ffvelcdmd 7075 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ 𝐻) |
| 17 | 11, 16 | sseldd 3959 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
| 19 | | fzofzp1 13780 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) |
| 20 | 13, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 21 | 12, 20 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻) |
| 22 | 11, 21 | sseldd 3959 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 23 | 22 | rexrd 11285 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 25 | | fourierdlem46.10 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 27 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 = (𝑄‘𝐼)) |
| 28 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ dom 𝐹) |
| 29 | 27, 28 | eqeltrd 2834 |
. . . . . . . . . . . 12
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 30 | 29 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 31 | 30 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 32 | | ssun2 4154 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) |
| 33 | 32, 1 | sseqtrri 4008 |
. . . . . . . . . . . . . . . . . 18
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻 |
| 34 | | fourierdlem46.qiss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π(,)π)) |
| 35 | | ioossicc 13450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(-π(,)π) ⊆ (-π[,]π) |
| 36 | 34, 35 | sstrdi 3971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π[,]π)) |
| 37 | 36 | sselda 3958 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π)) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
| 39 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) |
| 40 | 38, 39 | eldifd 3937 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
| 41 | 33, 40 | sselid 3956 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ 𝐻) |
| 42 | | fourierdlem46.ranq |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝑄 = 𝐻) |
| 43 | 42 | eqcomd 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 = ran 𝑄) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄) |
| 45 | 41, 44 | eleqtrd 2836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄) |
| 47 | | ffn 6706 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑄:(0...𝑀)⟶𝐻 → 𝑄 Fn (0...𝑀)) |
| 48 | 12, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
| 50 | | fvelrnb 6939 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
| 52 | 46, 51 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 53 | 52 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 54 | | elfzelz 13541 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
| 55 | 54 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ ℤ) |
| 56 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝜑) |
| 57 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀)) |
| 58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) = 𝑥) |
| 59 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 60 | 58, 59 | eqeltrd 2834 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 61 | 60 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 62 | | elfzoelz 13676 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ) |
| 63 | 13, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 64 | 63 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ) |
| 65 | 17 | rexrd 11285 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑄‘𝐼) ∈
ℝ*) |
| 66 | 65 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 67 | 23 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 68 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 69 | | ioogtlb 45524 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
| 70 | 66, 67, 68, 69 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
| 71 | | fourierdlem46.qiso |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
| 72 | 71 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
| 73 | 15 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀)) |
| 74 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀)) |
| 75 | | isorel 7319 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
| 76 | 72, 73, 74, 75 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
| 77 | 70, 76 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗) |
| 78 | | iooltub 45539 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
| 79 | 66, 67, 68, 78 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
| 80 | 20 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀)) |
| 81 | | isorel 7319 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
| 82 | 72, 74, 80, 81 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
| 83 | 79, 82 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1)) |
| 84 | | btwnnz 12669 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗 ∧ 𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ) |
| 85 | 64, 77, 83, 84 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ) |
| 86 | 56, 57, 61, 85 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
| 87 | 86 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
| 88 | 55, 87 | pm2.65da 816 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄‘𝑗) = 𝑥) |
| 89 | 88 | nrexdv 3135 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
| 90 | 53, 89 | pm2.65da 816 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄) |
| 92 | 45, 91 | condan 817 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 93 | 92 | ralrimiva 3132 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 94 | | dfss3 3947 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 95 | 93, 94 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 96 | 95 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 97 | 65 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈
ℝ*) |
| 98 | 23 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 99 | | icossre 13445 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) →
((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 100 | 17, 23, 99 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 101 | 100 | sselda 3958 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ℝ) |
| 103 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ ℝ) |
| 104 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 105 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 106 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 107 | | icogelb 13413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
| 108 | 104, 105,
106, 107 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
| 109 | 108 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ≤ 𝑥) |
| 110 | | neqne 2940 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘𝐼) → 𝑥 ≠ (𝑄‘𝐼)) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ≠ (𝑄‘𝐼)) |
| 112 | 103, 102,
109, 111 | leneltd 11389 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) < 𝑥) |
| 113 | | icoltub 45537 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 114 | 104, 105,
106, 113 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 116 | 97, 98, 102, 112, 115 | eliood 45527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 117 | 96, 116 | sseldd 3959 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 118 | 117 | adantllr 719 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
| 119 | 31, 118 | pm2.61dan 812 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 120 | 119 | ralrimiva 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 121 | | dfss3 3947 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 122 | 120, 121 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 123 | | fourierdlem46.cn |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 124 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 125 | | rescncf 24841 |
. . . . . . 7
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))) |
| 126 | 122, 124,
125 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)) |
| 127 | 18, 24, 26, 126 | icocncflimc 45918 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) ∈ (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 128 | 17 | leidd 11803 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ≤ (𝑄‘𝐼)) |
| 129 | 65, 23, 65, 128, 25 | elicod 13412 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 130 | | fvres 6895 |
. . . . . . . 8
⊢ ((𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
| 131 | 129, 130 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
| 132 | 131 | eqcomd 2741 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
| 133 | 132 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
| 134 | | ioossico 13455 |
. . . . . . . . 9
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) |
| 135 | 134 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
| 136 | 135 | resabs1d 5995 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 137 | 136 | eqcomd 2741 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 138 | 137 | oveq1d 7420 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 139 | 127, 133,
138 | 3eltr4d 2849 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 140 | 139 | ne0d 4317 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 141 | | pnfxr 11289 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 142 | 141 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 143 | 22 | ltpnfd 13137 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) < +∞) |
| 144 | 23, 142, 143 | xrltled 13166 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞) |
| 145 | | iooss2 13398 |
. . . . . . . . 9
⊢
((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
| 146 | 141, 144,
145 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
| 147 | 146 | resabs1d 5995 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 148 | 147 | oveq1d 7420 |
. . . . . 6
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 149 | 148 | eqcomd 2741 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 150 | 149 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
| 151 | | limcresi 25838 |
. . . . 5
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) |
| 152 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
| 153 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → 𝜑) |
| 154 | 2 | renegcli 11544 |
. . . . . . . . . . . 12
⊢ -π
∈ ℝ |
| 155 | 154 | rexri 11293 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ* |
| 156 | 155 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ*) |
| 157 | 2 | rexri 11293 |
. . . . . . . . . . 11
⊢ π
∈ ℝ* |
| 158 | 157 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ*) |
| 159 | 4, 3, 17, 22, 25, 34 | fourierdlem10 46146 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π ≤ (𝑄‘𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π)) |
| 160 | 159 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → -π ≤ (𝑄‘𝐼)) |
| 161 | 159 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π) |
| 162 | 17, 22, 3, 25, 161 | ltletrd 11395 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝐼) < π) |
| 163 | 156, 158,
65, 160, 162 | elicod 13412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ∈ (-π[,)π)) |
| 164 | 163 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ (-π[,)π)) |
| 165 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ¬ (𝑄‘𝐼) ∈ dom 𝐹) |
| 166 | 164, 165 | eldifd 3937 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) |
| 167 | 153, 166 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
| 168 | | eleq1 2822 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
| 169 | 168 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))) |
| 170 | | oveq1 7412 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥(,)+∞) = ((𝑄‘𝐼)(,)+∞)) |
| 171 | 170 | reseq2d 5966 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄‘𝐼)(,)+∞))) |
| 172 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → 𝑥 = (𝑄‘𝐼)) |
| 173 | 171, 172 | oveq12d 7423 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) = ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼))) |
| 174 | 173 | neeq1d 2991 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
| 175 | 169, 174 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘𝐼) → (((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅))) |
| 176 | | fourierdlem46.rlim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 177 | 175, 176 | vtoclg 3533 |
. . . . . 6
⊢ ((𝑄‘𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
| 178 | 152, 167,
177 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 179 | | ssn0 4379 |
. . . . 5
⊢ ((((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 180 | 151, 178,
179 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 181 | 150, 180 | eqnetrd 2999 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 182 | 140, 181 | pm2.61dan 812 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
| 183 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) ∈
ℝ*) |
| 184 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 185 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
| 186 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1))) |
| 187 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
| 188 | 186, 187 | eqeltrd 2834 |
. . . . . . . . . . . 12
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 189 | 188 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 190 | 189 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 191 | 95 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 192 | 65 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) ∈
ℝ*) |
| 193 | 23 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 194 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
| 195 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 196 | | iocssre 13444 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 197 | 194, 195,
196 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
| 198 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
| 199 | 197, 198 | sseldd 3959 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
| 200 | 199 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) |
| 201 | 23 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 202 | | iocgtlb 45531 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
| 203 | 194, 201,
198, 202 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
| 204 | 203 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) < 𝑥) |
| 205 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 206 | | iocleub 45532 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 207 | 194, 201,
198, 206 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 208 | 207 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
| 209 | | neqne 2940 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1))) |
| 210 | 209 | necomd 2987 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
| 211 | 210 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
| 212 | 200, 205,
208, 211 | leneltd 11389 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 213 | 192, 193,
200, 204, 212 | eliood 45527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 214 | 191, 213 | sseldd 3959 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 215 | 214 | adantllr 719 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
| 216 | 190, 215 | pm2.61dan 812 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
| 217 | 216 | ralrimiva 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 218 | | dfss3 3947 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
| 219 | 217, 218 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
| 220 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 221 | | rescncf 24841 |
. . . . . . 7
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))) |
| 222 | 219, 220,
221 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)) |
| 223 | 183, 184,
185, 222 | ioccncflimc 45914 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 224 | 22 | leidd 11803 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
| 225 | 65, 23, 23, 25, 224 | eliocd 45536 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
| 226 | | fvres 6895 |
. . . . . . . . 9
⊢ ((𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
| 227 | 225, 226 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
| 228 | 227 | eqcomd 2741 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1)))) |
| 229 | | ioossioc 45521 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) |
| 230 | | resabs1 5993 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 231 | 229, 230 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 232 | 231 | eqcomi 2744 |
. . . . . . . . 9
⊢ (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 233 | 232 | oveq1i 7415 |
. . . . . . . 8
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
| 234 | 233 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 235 | 228, 234 | eleq12d 2828 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
| 236 | 235 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
| 237 | 223, 236 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 238 | 237 | ne0d 4317 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 239 | | mnfxr 11292 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
| 240 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 241 | 17 | mnfltd 13140 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ < (𝑄‘𝐼)) |
| 242 | 240, 65, 241 | xrltled 13166 |
. . . . . . . . 9
⊢ (𝜑 → -∞ ≤ (𝑄‘𝐼)) |
| 243 | | iooss1 13397 |
. . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 244 | 239, 242,
243 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 245 | 244 | resabs1d 5995 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 246 | 245 | eqcomd 2741 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 247 | 246 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 248 | 247 | oveq1d 7420 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 249 | | limcresi 25838 |
. . . . 5
⊢ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
| 250 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 251 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑) |
| 252 | 155 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈
ℝ*) |
| 253 | 157 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈
ℝ*) |
| 254 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 255 | 4, 17, 22, 160, 25 | lelttrd 11393 |
. . . . . . . . . 10
⊢ (𝜑 → -π < (𝑄‘(𝐼 + 1))) |
| 256 | 255 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1))) |
| 257 | 161 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π) |
| 258 | 252, 253,
254, 256, 257 | eliocd 45536 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
(-π(,]π)) |
| 259 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
| 260 | 258, 259 | eldifd 3937 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) |
| 261 | 251, 260 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
| 262 | | eleq1 2822 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
| 263 | 262 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)))) |
| 264 | | oveq2 7413 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1)))) |
| 265 | 264 | reseq2d 5966 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1))))) |
| 266 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1))) |
| 267 | 265, 266 | oveq12d 7423 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
| 268 | 267 | neeq1d 2991 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
| 269 | 263, 268 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅))) |
| 270 | | fourierdlem46.llim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 271 | 269, 270 | vtoclg 3533 |
. . . . . 6
⊢ ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
| 272 | 250, 261,
271 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 273 | | ssn0 4379 |
. . . . 5
⊢ ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 274 | 249, 272,
273 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 275 | 248, 274 | eqnetrd 2999 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 276 | 238, 275 | pm2.61dan 812 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
| 277 | 182, 276 | jca 511 |
1
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |