Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem46 Structured version   Visualization version   GIF version

Theorem fourierdlem46 45453
Description: The function 𝐹 has a limit at the bounds of every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem46.cn (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
fourierdlem46.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem46.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem46.qiso (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
fourierdlem46.qf (𝜑𝑄:(0...𝑀)⟶𝐻)
fourierdlem46.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem46.10 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
fourierdlem46.qiss (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
fourierdlem46.c (𝜑𝐶 ∈ ℝ)
fourierdlem46.h 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
fourierdlem46.ranq (𝜑 → ran 𝑄 = 𝐻)
Assertion
Ref Expression
fourierdlem46 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem fourierdlem46
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem46.h . . . . . . . . 9 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
2 pire 26367 . . . . . . . . . . . . 13 π ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
43renegcld 11657 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
5 fourierdlem46.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 tpssi 4835 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆ ℝ)
74, 3, 5, 6syl3anc 1369 . . . . . . . . . 10 (𝜑 → {-π, π, 𝐶} ⊆ ℝ)
84, 3iccssred 13429 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
98ssdifssd 4138 . . . . . . . . . 10 (𝜑 → ((-π[,]π) ∖ dom 𝐹) ⊆ ℝ)
107, 9unssd 4182 . . . . . . . . 9 (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) ⊆ ℝ)
111, 10eqsstrid 4026 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
12 fourierdlem46.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶𝐻)
13 fourierdlem46.i . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑀))
14 elfzofz 13666 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
1513, 14syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (0...𝑀))
1612, 15ffvelcdmd 7089 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ 𝐻)
1711, 16sseldd 3979 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ ℝ)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
19 fzofzp1 13747 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
2013, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
2112, 20ffvelcdmd 7089 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻)
2211, 21sseldd 3979 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
2322rexrd 11280 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2423adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
25 fourierdlem46.10 . . . . . . 7 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
2625adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
27 simpr 484 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 = (𝑄𝐼))
28 simpl 482 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ dom 𝐹)
2927, 28eqeltrd 2828 . . . . . . . . . . . 12 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3029adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3130adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
32 ssun2 4169 . . . . . . . . . . . . . . . . . . 19 ((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
3332, 1sseqtrri 4015 . . . . . . . . . . . . . . . . . 18 ((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻
34 fourierdlem46.qiss . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
35 ioossicc 13428 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)π) ⊆ (-π[,]π)
3634, 35sstrdi 3990 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π[,]π))
3736sselda 3978 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π))
3837adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
39 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
4038, 39eldifd 3955 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹))
4133, 40sselid 3976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥𝐻)
42 fourierdlem46.ranq . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝑄 = 𝐻)
4342eqcomd 2733 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ran 𝑄)
4443ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄)
4541, 44eleqtrd 2830 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄)
46 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
47 ffn 6716 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
4812, 47syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 Fn (0...𝑀))
4948adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
50 fvelrnb 6953 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5246, 51mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
5352adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
54 elfzelz 13519 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
5554ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ ℤ)
56 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝜑)
57 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) = 𝑥)
59 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6058, 59eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6160adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
62 elfzoelz 13650 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
6313, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐼 ∈ ℤ)
6463ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ)
6517rexrd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑄𝐼) ∈ ℝ*)
6665ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
6723ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
68 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
69 ioogtlb 44793 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
7066, 67, 68, 69syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
71 fourierdlem46.qiso . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
7271ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
7315ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀))
74 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀))
75 isorel 7328 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7672, 73, 74, 75syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7770, 76mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗)
78 iooltub 44808 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
7966, 67, 68, 78syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
8020ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀))
81 isorel 7328 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8272, 74, 80, 81syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8379, 82mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1))
84 btwnnz 12654 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ)
8564, 77, 83, 84syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ)
8656, 57, 61, 85syl21anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8786adantllr 718 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8855, 87pm2.65da 816 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄𝑗) = 𝑥)
8988nrexdv 3144 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
9053, 89pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄)
9190adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄)
9245, 91condan 817 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
9392ralrimiva 3141 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
94 dfss3 3966 . . . . . . . . . . . . . 14 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
9593, 94sylibr 233 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9695ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9765ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ*)
9823ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
99 icossre 13423 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
10017, 23, 99syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
101100sselda 3978 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
102101adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ℝ)
10317ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ)
10465adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
10523adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
106 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
107 icogelb 13393 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
108104, 105, 106, 107syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
109108adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ≤ 𝑥)
110 neqne 2943 . . . . . . . . . . . . . . 15 𝑥 = (𝑄𝐼) → 𝑥 ≠ (𝑄𝐼))
111110adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ≠ (𝑄𝐼))
112103, 102, 109, 111leneltd 11384 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) < 𝑥)
113 icoltub 44806 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
114104, 105, 106, 113syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
115114adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1)))
11697, 98, 102, 112, 115eliood 44796 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
11796, 116sseldd 3979 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
118117adantllr 718 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
11931, 118pm2.61dan 812 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
120119ralrimiva 3141 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
121 dfss3 3966 . . . . . . . 8 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
122120, 121sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
123 fourierdlem46.cn . . . . . . . 8 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
124123adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
125 rescncf 24791 . . . . . . 7 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)))
126122, 124, 125sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))
12718, 24, 26, 126icocncflimc 45190 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) ∈ (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
12817leidd 11796 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ≤ (𝑄𝐼))
12965, 23, 65, 128, 25elicod 13392 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
130 fvres 6910 . . . . . . . 8 ((𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
131129, 130syl 17 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
132131eqcomd 2733 . . . . . 6 (𝜑 → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
133132adantr 480 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
134 ioossico 13433 . . . . . . . . 9 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))
135134a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
136135resabs1d 6010 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
137136eqcomd 2733 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
138137oveq1d 7429 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
139127, 133, 1383eltr4d 2843 . . . 4 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
140139ne0d 4331 . . 3 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
141 pnfxr 11284 . . . . . . . . 9 +∞ ∈ ℝ*
142141a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
14322ltpnfd 13119 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) < +∞)
14423, 142, 143xrltled 13147 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞)
145 iooss2 13378 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
146141, 144, 145sylancr 586 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
147146resabs1d 6010 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
148147oveq1d 7429 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
149148eqcomd 2733 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
150149adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
151 limcresi 25788 . . . . 5 ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼))
15217adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
153 simpl 482 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → 𝜑)
1542renegcli 11537 . . . . . . . . . . . 12 -π ∈ ℝ
155154rexri 11288 . . . . . . . . . . 11 -π ∈ ℝ*
156155a1i 11 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ*)
1572rexri 11288 . . . . . . . . . . 11 π ∈ ℝ*
158157a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℝ*)
1594, 3, 17, 22, 25, 34fourierdlem10 45418 . . . . . . . . . . 11 (𝜑 → (-π ≤ (𝑄𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π))
160159simpld 494 . . . . . . . . . 10 (𝜑 → -π ≤ (𝑄𝐼))
161159simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π)
16217, 22, 3, 25, 161ltletrd 11390 . . . . . . . . . 10 (𝜑 → (𝑄𝐼) < π)
163156, 158, 65, 160, 162elicod 13392 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ∈ (-π[,)π))
164163adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ (-π[,)π))
165 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ¬ (𝑄𝐼) ∈ dom 𝐹)
166164, 165eldifd 3955 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))
167153, 166jca 511 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
168 eleq1 2816 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
169168anbi2d 628 . . . . . . . 8 (𝑥 = (𝑄𝐼) → ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))))
170 oveq1 7421 . . . . . . . . . . 11 (𝑥 = (𝑄𝐼) → (𝑥(,)+∞) = ((𝑄𝐼)(,)+∞))
171170reseq2d 5979 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄𝐼)(,)+∞)))
172 id 22 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → 𝑥 = (𝑄𝐼))
173171, 172oveq12d 7432 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) = ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)))
174173neeq1d 2995 . . . . . . . 8 (𝑥 = (𝑄𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
175169, 174imbi12d 344 . . . . . . 7 (𝑥 = (𝑄𝐼) → (((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)))
176 fourierdlem46.rlim . . . . . . 7 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
177175, 176vtoclg 3538 . . . . . 6 ((𝑄𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
178152, 167, 177sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)
179 ssn0 4396 . . . . 5 ((((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ∧ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
180151, 178, 179sylancr 586 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
181150, 180eqnetrd 3003 . . 3 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
182140, 181pm2.61dan 812 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
18365adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ*)
18422adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
18525adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
186 simpr 484 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1)))
187 simpl 482 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
188186, 187eqeltrd 2828 . . . . . . . . . . . 12 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
189188adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
190189adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
19195ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
19265ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) ∈ ℝ*)
19323ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19465adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
19522adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
196 iocssre 13422 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
197194, 195, 196syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
198 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
199197, 198sseldd 3979 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
200199adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
20123adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
202 iocgtlb 44800 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
203194, 201, 198, 202syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
204203adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) < 𝑥)
20522ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
206 iocleub 44801 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
207194, 201, 198, 206syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
208207adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
209 neqne 2943 . . . . . . . . . . . . . . . 16 𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1)))
210209necomd 2991 . . . . . . . . . . . . . . 15 𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
211210adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
212200, 205, 208, 211leneltd 11384 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1)))
213192, 193, 200, 204, 212eliood 44796 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
214191, 213sseldd 3979 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
215214adantllr 718 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
216190, 215pm2.61dan 812 . . . . . . . . 9 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
217216ralrimiva 3141 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
218 dfss3 3966 . . . . . . . 8 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
219217, 218sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
220123adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
221 rescncf 24791 . . . . . . 7 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)))
222219, 220, 221sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))
223183, 184, 185, 222ioccncflimc 45186 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
22422leidd 11796 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1)))
22565, 23, 23, 25, 224eliocd 44805 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
226 fvres 6910 . . . . . . . . 9 ((𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
227225, 226syl 17 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
228227eqcomd 2733 . . . . . . 7 (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))))
229 ioossioc 44790 . . . . . . . . . . 11 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))
230 resabs1 6009 . . . . . . . . . . 11 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
231229, 230ax-mp 5 . . . . . . . . . 10 ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
232231eqcomi 2736 . . . . . . . . 9 (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
233232oveq1i 7424 . . . . . . . 8 ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
234233a1i 11 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
235228, 234eleq12d 2822 . . . . . 6 (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
236235adantr 480 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
237223, 236mpbird 257 . . . 4 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
238237ne0d 4331 . . 3 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
239 mnfxr 11287 . . . . . . . . 9 -∞ ∈ ℝ*
240239a1i 11 . . . . . . . . . 10 (𝜑 → -∞ ∈ ℝ*)
24117mnfltd 13122 . . . . . . . . . 10 (𝜑 → -∞ < (𝑄𝐼))
242240, 65, 241xrltled 13147 . . . . . . . . 9 (𝜑 → -∞ ≤ (𝑄𝐼))
243 iooss1 13377 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
244239, 242, 243sylancr 586 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
245244resabs1d 6010 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
246245eqcomd 2733 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
247246adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
248247oveq1d 7429 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
249 limcresi 25788 . . . . 5 ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
25022adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
251 simpl 482 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑)
252155a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈ ℝ*)
253157a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈ ℝ*)
25423adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2554, 17, 22, 160, 25lelttrd 11388 . . . . . . . . . 10 (𝜑 → -π < (𝑄‘(𝐼 + 1)))
256255adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1)))
257161adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π)
258252, 253, 254, 256, 257eliocd 44805 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ (-π(,]π))
259 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
260258, 259eldifd 3955 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))
261251, 260jca 511 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
262 eleq1 2816 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
263262anbi2d 628 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))))
264 oveq2 7422 . . . . . . . . . . 11 (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1))))
265264reseq2d 5979 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))))
266 id 22 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1)))
267265, 266oveq12d 7432 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
268267neeq1d 2995 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
269263, 268imbi12d 344 . . . . . . 7 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)))
270 fourierdlem46.llim . . . . . . 7 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
271269, 270vtoclg 3538 . . . . . 6 ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
272250, 261, 271sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
273 ssn0 4396 . . . . 5 ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
274249, 272, 273sylancr 586 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
275248, 274eqnetrd 3003 . . 3 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
276238, 275pm2.61dan 812 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
277182, 276jca 511 1 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  cdif 3941  cun 3942  wss 3944  c0 4318  {ctp 4628   class class class wbr 5142  dom cdm 5672  ran crn 5673  cres 5674   Fn wfn 6537  wf 6538  cfv 6542   Isom wiso 6543  (class class class)co 7414  cc 11122  cr 11123  0cc0 11124  1c1 11125   + caddc 11127  +∞cpnf 11261  -∞cmnf 11262  *cxr 11263   < clt 11264  cle 11265  -cneg 11461  cz 12574  (,)cioo 13342  (,]cioc 13343  [,)cico 13344  [,]cicc 13345  ...cfz 13502  ..^cfzo 13645  πcpi 16028  cnccncf 24770   lim climc 25765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ioc 13347  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-seq 13985  df-exp 14045  df-fac 14251  df-bc 14280  df-hash 14308  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-sum 15651  df-ef 16029  df-sin 16031  df-cos 16032  df-pi 16034  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-xrs 17469  df-qtop 17474  df-imas 17475  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-mulg 19008  df-cntz 19252  df-cmn 19721  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lp 23014  df-perf 23015  df-cn 23105  df-cnp 23106  df-haus 23193  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-xms 24200  df-ms 24201  df-tms 24202  df-cncf 24772  df-limc 25769  df-dv 25770
This theorem is referenced by:  fourierdlem102  45509  fourierdlem114  45521
  Copyright terms: Public domain W3C validator