Step | Hyp | Ref
| Expression |
1 | | fourierdlem46.h |
. . . . . . . . 9
⊢ 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) |
2 | | pire 25520 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ |
3 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → π ∈
ℝ) |
4 | 3 | renegcld 11332 |
. . . . . . . . . . 11
⊢ (𝜑 → -π ∈
ℝ) |
5 | | fourierdlem46.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | | tpssi 4766 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆
ℝ) |
7 | 4, 3, 5, 6 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → {-π, π, 𝐶} ⊆
ℝ) |
8 | 4, 3 | iccssred 13095 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
9 | 8 | ssdifssd 4073 |
. . . . . . . . . 10
⊢ (𝜑 → ((-π[,]π) ∖
dom 𝐹) ⊆
ℝ) |
10 | 7, 9 | unssd 4116 |
. . . . . . . . 9
⊢ (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖
dom 𝐹)) ⊆
ℝ) |
11 | 1, 10 | eqsstrid 3965 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ⊆ ℝ) |
12 | | fourierdlem46.qf |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) |
13 | | fourierdlem46.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
14 | | elfzofz 13331 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
16 | 12, 15 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ 𝐻) |
17 | 11, 16 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
19 | | fzofzp1 13412 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) |
20 | 13, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
21 | 12, 20 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻) |
22 | 11, 21 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
23 | 22 | rexrd 10956 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
25 | | fourierdlem46.10 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
27 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 = (𝑄‘𝐼)) |
28 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ dom 𝐹) |
29 | 27, 28 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝑄‘𝐼) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
30 | 29 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
31 | 30 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
32 | | ssun2 4103 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) |
33 | 32, 1 | sseqtrri 3954 |
. . . . . . . . . . . . . . . . . 18
⊢
((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻 |
34 | | fourierdlem46.qiss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π(,)π)) |
35 | | ioossicc 13094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(-π(,)π) ⊆ (-π[,]π) |
36 | 34, 35 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆
(-π[,]π)) |
37 | 36 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π)) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π)) |
39 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹) |
40 | 38, 39 | eldifd 3894 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹)) |
41 | 33, 40 | sselid 3915 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ 𝐻) |
42 | | fourierdlem46.ranq |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝑄 = 𝐻) |
43 | 42 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 = ran 𝑄) |
44 | 43 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄) |
45 | 41, 44 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄) |
46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄) |
47 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑄:(0...𝑀)⟶𝐻 → 𝑄 Fn (0...𝑀)) |
48 | 12, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
50 | | fvelrnb 6812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥)) |
52 | 46, 51 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
53 | 52 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
54 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
55 | 54 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ ℤ) |
56 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝜑) |
57 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀)) |
58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) = 𝑥) |
59 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
60 | 58, 59 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
61 | 60 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
62 | | elfzoelz 13316 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ) |
63 | 13, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐼 ∈ ℤ) |
64 | 63 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ) |
65 | 17 | rexrd 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑄‘𝐼) ∈
ℝ*) |
66 | 65 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
67 | 23 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
68 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
69 | | ioogtlb 42923 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
70 | 66, 67, 68, 69 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < (𝑄‘𝑗)) |
71 | | fourierdlem46.qiso |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
72 | 71 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻)) |
73 | 15 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀)) |
74 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀)) |
75 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
76 | 72, 73, 74, 75 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄‘𝐼) < (𝑄‘𝑗))) |
77 | 70, 76 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗) |
78 | | iooltub 42938 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
79 | 66, 67, 68, 78 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝑗) < (𝑄‘(𝐼 + 1))) |
80 | 20 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀)) |
81 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
82 | 72, 74, 80, 81 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄‘𝑗) < (𝑄‘(𝐼 + 1)))) |
83 | 79, 82 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1)) |
84 | | btwnnz 12326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗 ∧ 𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ) |
85 | 64, 77, 83, 84 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ) |
86 | 56, 57, 61, 85 | syl21anc 834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
87 | 86 | adantllr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ) |
88 | 55, 87 | pm2.65da 813 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄‘𝑗) = 𝑥) |
89 | 88 | nrexdv 3197 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑥) |
90 | 53, 89 | pm2.65da 813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄) |
92 | 45, 91 | condan 814 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
93 | 92 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
94 | | dfss3 3905 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
95 | 93, 94 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
96 | 95 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
97 | 65 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈
ℝ*) |
98 | 23 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
99 | | icossre 13089 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) →
((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
100 | 17, 23, 99 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ) |
101 | 100 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
102 | 101 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ℝ) |
103 | 17 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ∈ ℝ) |
104 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
105 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
106 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
107 | | icogelb 13059 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
108 | 104, 105,
106, 107 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ≤ 𝑥) |
109 | 108 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) ≤ 𝑥) |
110 | | neqne 2950 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘𝐼) → 𝑥 ≠ (𝑄‘𝐼)) |
111 | 110 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ≠ (𝑄‘𝐼)) |
112 | 103, 102,
109, 111 | leneltd 11059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → (𝑄‘𝐼) < 𝑥) |
113 | | icoltub 42936 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
114 | 104, 105,
106, 113 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
115 | 114 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1))) |
116 | 97, 98, 102, 112, 115 | eliood 42926 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
117 | 96, 116 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
118 | 117 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘𝐼)) → 𝑥 ∈ dom 𝐹) |
119 | 31, 118 | pm2.61dan 809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
120 | 119 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
121 | | dfss3 3905 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
122 | 120, 121 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
123 | | fourierdlem46.cn |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
124 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
125 | | rescncf 23966 |
. . . . . . 7
⊢ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))) |
126 | 122, 124,
125 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)) |
127 | 18, 24, 26, 126 | icocncflimc 43320 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) ∈ (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
128 | 17 | leidd 11471 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ≤ (𝑄‘𝐼)) |
129 | 65, 23, 65, 128, 25 | elicod 13058 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
130 | | fvres 6775 |
. . . . . . . 8
⊢ ((𝑄‘𝐼) ∈ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
131 | 129, 130 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼)) = (𝐹‘(𝑄‘𝐼))) |
132 | 131 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
133 | 132 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄‘𝐼))) |
134 | | ioossico 13099 |
. . . . . . . . 9
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1))) |
135 | 134 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) |
136 | 135 | resabs1d 5911 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
137 | 136 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
138 | 137 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
139 | 127, 133,
138 | 3eltr4d 2854 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄‘𝐼)) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
140 | 139 | ne0d 4266 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
141 | | pnfxr 10960 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
142 | 141 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → +∞ ∈
ℝ*) |
143 | 22 | ltpnfd 12786 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) < +∞) |
144 | 23, 142, 143 | xrltled 12813 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞) |
145 | | iooss2 13044 |
. . . . . . . . 9
⊢
((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
146 | 141, 144,
145 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,)+∞)) |
147 | 146 | resabs1d 5911 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
148 | 147 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
149 | 148 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
150 | 149 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) = (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼))) |
151 | | limcresi 24954 |
. . . . 5
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) |
152 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ℝ) |
153 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → 𝜑) |
154 | 2 | renegcli 11212 |
. . . . . . . . . . . 12
⊢ -π
∈ ℝ |
155 | 154 | rexri 10964 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ* |
156 | 155 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ*) |
157 | 2 | rexri 10964 |
. . . . . . . . . . 11
⊢ π
∈ ℝ* |
158 | 157 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ*) |
159 | 4, 3, 17, 22, 25, 34 | fourierdlem10 43548 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π ≤ (𝑄‘𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π)) |
160 | 159 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → -π ≤ (𝑄‘𝐼)) |
161 | 159 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π) |
162 | 17, 22, 3, 25, 161 | ltletrd 11065 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝐼) < π) |
163 | 156, 158,
65, 160, 162 | elicod 13058 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝐼) ∈ (-π[,)π)) |
164 | 163 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ (-π[,)π)) |
165 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ¬ (𝑄‘𝐼) ∈ dom 𝐹) |
166 | 164, 165 | eldifd 3894 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) |
167 | 153, 166 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
168 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))) |
169 | 168 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))) |
170 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘𝐼) → (𝑥(,)+∞) = ((𝑄‘𝐼)(,)+∞)) |
171 | 170 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄‘𝐼)(,)+∞))) |
172 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘𝐼) → 𝑥 = (𝑄‘𝐼)) |
173 | 171, 172 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) = ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼))) |
174 | 173 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
175 | 169, 174 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘𝐼) → (((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅))) |
176 | | fourierdlem46.rlim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
177 | 175, 176 | vtoclg 3495 |
. . . . . 6
⊢ ((𝑄‘𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄‘𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅)) |
178 | 152, 167,
177 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) |
179 | | ssn0 4331 |
. . . . 5
⊢ ((((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ⊆ (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) limℂ (𝑄‘𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
180 | 151, 178,
179 | sylancr 586 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄‘𝐼)(,)+∞)) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
181 | 150, 180 | eqnetrd 3010 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
182 | 140, 181 | pm2.61dan 809 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅) |
183 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) ∈
ℝ*) |
184 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
185 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) |
186 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1))) |
187 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
188 | 186, 187 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹 ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
189 | 188 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
190 | 189 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
191 | 95 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
192 | 65 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) ∈
ℝ*) |
193 | 23 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
194 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈
ℝ*) |
195 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
196 | | iocssre 13088 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
197 | 194, 195,
196 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ) |
198 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
199 | 197, 198 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
200 | 199 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) |
201 | 23 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
202 | | iocgtlb 42930 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
203 | 194, 201,
198, 202 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
204 | 203 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘𝐼) < 𝑥) |
205 | 22 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
206 | | iocleub 42931 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
207 | 194, 201,
198, 206 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
208 | 207 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1))) |
209 | | neqne 2950 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1))) |
210 | 209 | necomd 2998 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
211 | 210 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥) |
212 | 200, 205,
208, 211 | leneltd 11059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
213 | 192, 193,
200, 204, 212 | eliood 42926 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
214 | 191, 213 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
215 | 214 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹) |
216 | 190, 215 | pm2.61dan 809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹) |
217 | 216 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
218 | | dfss3 3905 |
. . . . . . . 8
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹) |
219 | 217, 218 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹) |
220 | 123 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
221 | | rescncf 23966 |
. . . . . . 7
⊢ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))) |
222 | 219, 220,
221 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)) |
223 | 183, 184,
185, 222 | ioccncflimc 43316 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
224 | 22 | leidd 11471 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
225 | 65, 23, 23, 25, 224 | eliocd 42935 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) |
226 | | fvres 6775 |
. . . . . . . . 9
⊢ ((𝑄‘(𝐼 + 1)) ∈ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
227 | 225, 226 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1)))) |
228 | 227 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1)))) |
229 | | ioossioc 42920 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) |
230 | | resabs1 5910 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
231 | 229, 230 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
232 | 231 | eqcomi 2747 |
. . . . . . . . 9
⊢ (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
233 | 232 | oveq1i 7265 |
. . . . . . . 8
⊢ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
234 | 233 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
235 | 228, 234 | eleq12d 2833 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
236 | 235 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄‘𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))))) |
237 | 223, 236 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
238 | 237 | ne0d 4266 |
. . 3
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
239 | | mnfxr 10963 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
240 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ ∈
ℝ*) |
241 | 17 | mnfltd 12789 |
. . . . . . . . . 10
⊢ (𝜑 → -∞ < (𝑄‘𝐼)) |
242 | 240, 65, 241 | xrltled 12813 |
. . . . . . . . 9
⊢ (𝜑 → -∞ ≤ (𝑄‘𝐼)) |
243 | | iooss1 13043 |
. . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄‘𝐼)) → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
244 | 239, 242,
243 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1)))) |
245 | 244 | resabs1d 5911 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
246 | 245 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
247 | 246 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
248 | 247 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
249 | | limcresi 24954 |
. . . . 5
⊢ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) |
250 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
251 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑) |
252 | 155 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈
ℝ*) |
253 | 157 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈
ℝ*) |
254 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
255 | 4, 17, 22, 160, 25 | lelttrd 11063 |
. . . . . . . . . 10
⊢ (𝜑 → -π < (𝑄‘(𝐼 + 1))) |
256 | 255 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1))) |
257 | 161 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π) |
258 | 252, 253,
254, 256, 257 | eliocd 42935 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈
(-π(,]π)) |
259 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) |
260 | 258, 259 | eldifd 3894 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) |
261 | 251, 260 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
262 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹))) |
263 | 262 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)))) |
264 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1)))) |
265 | 264 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1))))) |
266 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1))) |
267 | 265, 266 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1)))) |
268 | 267 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
269 | 263, 268 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅))) |
270 | | fourierdlem46.llim |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
271 | 269, 270 | vtoclg 3495 |
. . . . . 6
⊢ ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom
𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |
272 | 250, 261,
271 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
273 | | ssn0 4331 |
. . . . 5
⊢ ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
274 | 249, 272,
273 | sylancr 586 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
275 | 248, 274 | eqnetrd 3010 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
276 | 238, 275 | pm2.61dan 809 |
. 2
⊢ (𝜑 → ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅) |
277 | 182, 276 | jca 511 |
1
⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) |