Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem46 Structured version   Visualization version   GIF version

Theorem fourierdlem46 43662
Description: The function 𝐹 has a limit at the bounds of every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem46.cn (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
fourierdlem46.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem46.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem46.qiso (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
fourierdlem46.qf (𝜑𝑄:(0...𝑀)⟶𝐻)
fourierdlem46.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem46.10 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
fourierdlem46.qiss (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
fourierdlem46.c (𝜑𝐶 ∈ ℝ)
fourierdlem46.h 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
fourierdlem46.ranq (𝜑 → ran 𝑄 = 𝐻)
Assertion
Ref Expression
fourierdlem46 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem fourierdlem46
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem46.h . . . . . . . . 9 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
2 pire 25611 . . . . . . . . . . . . 13 π ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
43renegcld 11400 . . . . . . . . . . 11 (𝜑 → -π ∈ ℝ)
5 fourierdlem46.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 tpssi 4775 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐶 ∈ ℝ) → {-π, π, 𝐶} ⊆ ℝ)
74, 3, 5, 6syl3anc 1370 . . . . . . . . . 10 (𝜑 → {-π, π, 𝐶} ⊆ ℝ)
84, 3iccssred 13163 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
98ssdifssd 4082 . . . . . . . . . 10 (𝜑 → ((-π[,]π) ∖ dom 𝐹) ⊆ ℝ)
107, 9unssd 4125 . . . . . . . . 9 (𝜑 → ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) ⊆ ℝ)
111, 10eqsstrid 3974 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
12 fourierdlem46.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶𝐻)
13 fourierdlem46.i . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝑀))
14 elfzofz 13399 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
1513, 14syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (0...𝑀))
1612, 15ffvelrnd 6957 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ 𝐻)
1711, 16sseldd 3927 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ ℝ)
1817adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
19 fzofzp1 13480 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
2013, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
2112, 20ffvelrnd 6957 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ 𝐻)
2211, 21sseldd 3927 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
2322rexrd 11024 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2423adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
25 fourierdlem46.10 . . . . . . 7 (𝜑 → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
2625adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
27 simpr 485 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 = (𝑄𝐼))
28 simpl 483 . . . . . . . . . . . . 13 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ dom 𝐹)
2927, 28eqeltrd 2841 . . . . . . . . . . . 12 (((𝑄𝐼) ∈ dom 𝐹𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3029adantll 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
3130adantlr 712 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
32 ssun2 4112 . . . . . . . . . . . . . . . . . . 19 ((-π[,]π) ∖ dom 𝐹) ⊆ ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹))
3332, 1sseqtrri 3963 . . . . . . . . . . . . . . . . . 18 ((-π[,]π) ∖ dom 𝐹) ⊆ 𝐻
34 fourierdlem46.qiss . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π))
35 ioossicc 13162 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)π) ⊆ (-π[,]π)
3634, 35sstrdi 3938 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π[,]π))
3736sselda 3926 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (-π[,]π))
3837adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
39 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
4038, 39eldifd 3903 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹))
4133, 40sselid 3924 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥𝐻)
42 fourierdlem46.ranq . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝑄 = 𝐻)
4342eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ran 𝑄)
4443ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝐻 = ran 𝑄)
4541, 44eleqtrd 2843 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄)
46 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → 𝑥 ∈ ran 𝑄)
47 ffn 6597 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑄:(0...𝑀)⟶𝐻𝑄 Fn (0...𝑀))
4812, 47syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑄 Fn (0...𝑀))
4948adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
50 fvelrnb 6825 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 Fn (0...𝑀) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ran 𝑄) → (𝑥 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥))
5246, 51mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
5352adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
54 elfzelz 13253 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
5554ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ ℤ)
56 simplll 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝜑)
57 simplr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → 𝑗 ∈ (0...𝑀))
58 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) = 𝑥)
59 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6058, 59eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
6160adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
62 elfzoelz 13384 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
6313, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐼 ∈ ℤ)
6463ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ ℤ)
6517rexrd 11024 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑄𝐼) ∈ ℝ*)
6665ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
6723ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
68 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
69 ioogtlb 43002 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
7066, 67, 68, 69syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < (𝑄𝑗))
71 fourierdlem46.qiso . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑄 Isom < , < ((0...𝑀), 𝐻))
7271ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑄 Isom < , < ((0...𝑀), 𝐻))
7315ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 ∈ (0...𝑀))
74 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 ∈ (0...𝑀))
75 isorel 7191 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝐼 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7672, 73, 74, 75syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 < 𝑗 ↔ (𝑄𝐼) < (𝑄𝑗)))
7770, 76mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐼 < 𝑗)
78 iooltub 43017 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
7966, 67, 68, 78syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝑗) < (𝑄‘(𝐼 + 1)))
8020ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝐼 + 1) ∈ (0...𝑀))
81 isorel 7191 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 Isom < , < ((0...𝑀), 𝐻) ∧ (𝑗 ∈ (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8272, 74, 80, 81syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑗 < (𝐼 + 1) ↔ (𝑄𝑗) < (𝑄‘(𝐼 + 1))))
8379, 82mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑗 < (𝐼 + 1))
84 btwnnz 12394 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ ℤ ∧ 𝐼 < 𝑗𝑗 < (𝐼 + 1)) → ¬ 𝑗 ∈ ℤ)
8564, 77, 83, 84syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑗 ∈ ℤ)
8656, 57, 61, 85syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8786adantllr 716 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = 𝑥) → ¬ 𝑗 ∈ ℤ)
8855, 87pm2.65da 814 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ¬ (𝑄𝑗) = 𝑥)
8988nrexdv 3200 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ 𝑥 ∈ ran 𝑄) → ¬ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑥)
9053, 89pm2.65da 814 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ¬ 𝑥 ∈ ran 𝑄)
9190adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝑄)
9245, 91condan 815 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
9392ralrimiva 3110 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
94 dfss3 3914 . . . . . . . . . . . . . 14 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
9593, 94sylibr 233 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9695ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
9765ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ*)
9823ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
99 icossre 13157 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
10017, 23, 99syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ ℝ)
101100sselda 3926 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
102101adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ℝ)
10317ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ∈ ℝ)
10465adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
10523adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
106 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
107 icogelb 13127 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
108104, 105, 106, 107syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ≤ 𝑥)
109108adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) ≤ 𝑥)
110 neqne 2953 . . . . . . . . . . . . . . 15 𝑥 = (𝑄𝐼) → 𝑥 ≠ (𝑄𝐼))
111110adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ≠ (𝑄𝐼))
112103, 102, 109, 111leneltd 11127 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → (𝑄𝐼) < 𝑥)
113 icoltub 43015 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
114104, 105, 106, 113syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
115114adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 < (𝑄‘(𝐼 + 1)))
11697, 98, 102, 112, 115eliood 43005 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
11796, 116sseldd 3927 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
118117adantllr 716 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄𝐼)) → 𝑥 ∈ dom 𝐹)
11931, 118pm2.61dan 810 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
120119ralrimiva 3110 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
121 dfss3 3914 . . . . . . . 8 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
122120, 121sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
123 fourierdlem46.cn . . . . . . . 8 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
124123adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
125 rescncf 24056 . . . . . . 7 (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ)))
126122, 124, 125sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))–cn→ℂ))
12718, 24, 26, 126icocncflimc 43399 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) ∈ (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
12817leidd 11539 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ≤ (𝑄𝐼))
12965, 23, 65, 128, 25elicod 13126 . . . . . . . 8 (𝜑 → (𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
130 fvres 6788 . . . . . . . 8 ((𝑄𝐼) ∈ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
131129, 130syl 17 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)) = (𝐹‘(𝑄𝐼)))
132131eqcomd 2746 . . . . . 6 (𝜑 → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
133132adantr 481 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))‘(𝑄𝐼)))
134 ioossico 13167 . . . . . . . . 9 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))
135134a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1))))
136135resabs1d 5920 . . . . . . 7 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
137136eqcomd 2746 . . . . . 6 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
138137oveq1d 7284 . . . . 5 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)[,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
139127, 133, 1383eltr4d 2856 . . . 4 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → (𝐹‘(𝑄𝐼)) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
140139ne0d 4275 . . 3 ((𝜑 ∧ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
141 pnfxr 11028 . . . . . . . . 9 +∞ ∈ ℝ*
142141a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
14322ltpnfd 12854 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) < +∞)
14423, 142, 143xrltled 12881 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ +∞)
145 iooss2 13112 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ≤ +∞) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
146141, 144, 145sylancr 587 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,)+∞))
147146resabs1d 5920 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
148147oveq1d 7284 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
149148eqcomd 2746 . . . . 5 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
150149adantr 481 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) = (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)))
151 limcresi 25045 . . . . 5 ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼))
15217adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ)
153 simpl 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → 𝜑)
1542renegcli 11280 . . . . . . . . . . . 12 -π ∈ ℝ
155154rexri 11032 . . . . . . . . . . 11 -π ∈ ℝ*
156155a1i 11 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ*)
1572rexri 11032 . . . . . . . . . . 11 π ∈ ℝ*
158157a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℝ*)
1594, 3, 17, 22, 25, 34fourierdlem10 43627 . . . . . . . . . . 11 (𝜑 → (-π ≤ (𝑄𝐼) ∧ (𝑄‘(𝐼 + 1)) ≤ π))
160159simpld 495 . . . . . . . . . 10 (𝜑 → -π ≤ (𝑄𝐼))
161159simprd 496 . . . . . . . . . . 11 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ π)
16217, 22, 3, 25, 161ltletrd 11133 . . . . . . . . . 10 (𝜑 → (𝑄𝐼) < π)
163156, 158, 65, 160, 162elicod 13126 . . . . . . . . 9 (𝜑 → (𝑄𝐼) ∈ (-π[,)π))
164163adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ (-π[,)π))
165 simpr 485 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ¬ (𝑄𝐼) ∈ dom 𝐹)
166164, 165eldifd 3903 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))
167153, 166jca 512 . . . . . 6 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
168 eleq1 2828 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → (𝑥 ∈ ((-π[,)π) ∖ dom 𝐹) ↔ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)))
169168anbi2d 629 . . . . . . . 8 (𝑥 = (𝑄𝐼) → ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹))))
170 oveq1 7276 . . . . . . . . . . 11 (𝑥 = (𝑄𝐼) → (𝑥(,)+∞) = ((𝑄𝐼)(,)+∞))
171170reseq2d 5889 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → (𝐹 ↾ (𝑥(,)+∞)) = (𝐹 ↾ ((𝑄𝐼)(,)+∞)))
172 id 22 . . . . . . . . . 10 (𝑥 = (𝑄𝐼) → 𝑥 = (𝑄𝐼))
173171, 172oveq12d 7287 . . . . . . . . 9 (𝑥 = (𝑄𝐼) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) = ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)))
174173neeq1d 3005 . . . . . . . 8 (𝑥 = (𝑄𝐼) → (((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
175169, 174imbi12d 345 . . . . . . 7 (𝑥 = (𝑄𝐼) → (((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)))
176 fourierdlem46.rlim . . . . . . 7 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
177175, 176vtoclg 3504 . . . . . 6 ((𝑄𝐼) ∈ ℝ → ((𝜑 ∧ (𝑄𝐼) ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅))
178152, 167, 177sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅)
179 ssn0 4340 . . . . 5 ((((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ⊆ (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ∧ ((𝐹 ↾ ((𝑄𝐼)(,)+∞)) lim (𝑄𝐼)) ≠ ∅) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
180151, 178, 179sylancr 587 . . . 4 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → (((𝐹 ↾ ((𝑄𝐼)(,)+∞)) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
181150, 180eqnetrd 3013 . . 3 ((𝜑 ∧ ¬ (𝑄𝐼) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
182140, 181pm2.61dan 810 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅)
18365adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) ∈ ℝ*)
18422adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
18525adantr 481 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄𝐼) < (𝑄‘(𝐼 + 1)))
186 simpr 485 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 = (𝑄‘(𝐼 + 1)))
187 simpl 483 . . . . . . . . . . . . 13 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
188186, 187eqeltrd 2841 . . . . . . . . . . . 12 (((𝑄‘(𝐼 + 1)) ∈ dom 𝐹𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
189188adantll 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
190189adantlr 712 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
19195ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
19265ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) ∈ ℝ*)
19323ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19465adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
19522adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
196 iocssre 13156 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
197194, 195, 196syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ ℝ)
198 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
199197, 198sseldd 3927 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
200199adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
20123adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
202 iocgtlb 43009 . . . . . . . . . . . . . . 15 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
203194, 201, 198, 202syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
204203adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄𝐼) < 𝑥)
20522ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
206 iocleub 43010 . . . . . . . . . . . . . . . 16 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
207194, 201, 198, 206syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
208207adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ≤ (𝑄‘(𝐼 + 1)))
209 neqne 2953 . . . . . . . . . . . . . . . 16 𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 ≠ (𝑄‘(𝐼 + 1)))
210209necomd 3001 . . . . . . . . . . . . . . 15 𝑥 = (𝑄‘(𝐼 + 1)) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
211210adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≠ 𝑥)
212200, 205, 208, 211leneltd 11127 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 < (𝑄‘(𝐼 + 1)))
213192, 193, 200, 204, 212eliood 43005 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
214191, 213sseldd 3927 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
215214adantllr 716 . . . . . . . . . 10 ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝐼 + 1))) → 𝑥 ∈ dom 𝐹)
216190, 215pm2.61dan 810 . . . . . . . . 9 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) ∧ 𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) → 𝑥 ∈ dom 𝐹)
217216ralrimiva 3110 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
218 dfss3 3914 . . . . . . . 8 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))𝑥 ∈ dom 𝐹)
219217, 218sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹)
220123adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝐹 ∈ (dom 𝐹cn→ℂ))
221 rescncf 24056 . . . . . . 7 (((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ)))
222219, 220, 221sylc 65 . . . . . 6 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ∈ (((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))–cn→ℂ))
223183, 184, 185, 222ioccncflimc 43395 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
22422leidd 11539 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ (𝑄‘(𝐼 + 1)))
22565, 23, 23, 25, 224eliocd 43014 . . . . . . . . 9 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))
226 fvres 6788 . . . . . . . . 9 ((𝑄‘(𝐼 + 1)) ∈ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
227225, 226syl 17 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) = (𝐹‘(𝑄‘(𝐼 + 1))))
228227eqcomd 2746 . . . . . . 7 (𝜑 → (𝐹‘(𝑄‘(𝐼 + 1))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))))
229 ioossioc 42999 . . . . . . . . . . 11 ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))
230 resabs1 5919 . . . . . . . . . . 11 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))) → ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
231229, 230ax-mp 5 . . . . . . . . . 10 ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
232231eqcomi 2749 . . . . . . . . 9 (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
233232oveq1i 7279 . . . . . . . 8 ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
234233a1i 11 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
235228, 234eleq12d 2835 . . . . . 6 (𝜑 → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
236235adantr 481 . . . . 5 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ↔ ((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1))))‘(𝑄‘(𝐼 + 1))) ∈ (((𝐹 ↾ ((𝑄𝐼)(,](𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))))
237223, 236mpbird 256 . . . 4 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹‘(𝑄‘(𝐼 + 1))) ∈ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
238237ne0d 4275 . . 3 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
239 mnfxr 11031 . . . . . . . . 9 -∞ ∈ ℝ*
240239a1i 11 . . . . . . . . . 10 (𝜑 → -∞ ∈ ℝ*)
24117mnfltd 12857 . . . . . . . . . 10 (𝜑 → -∞ < (𝑄𝐼))
242240, 65, 241xrltled 12881 . . . . . . . . 9 (𝜑 → -∞ ≤ (𝑄𝐼))
243 iooss1 13111 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝐼)) → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
244239, 242, 243sylancr 587 . . . . . . . 8 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-∞(,)(𝑄‘(𝐼 + 1))))
245244resabs1d 5920 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
246245eqcomd 2746 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
247246adantr 481 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
248247oveq1d 7284 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) = (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
249 limcresi 25045 . . . . 5 ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1)))
25022adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
251 simpl 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → 𝜑)
252155a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π ∈ ℝ*)
253157a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → π ∈ ℝ*)
25423adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2554, 17, 22, 160, 25lelttrd 11131 . . . . . . . . . 10 (𝜑 → -π < (𝑄‘(𝐼 + 1)))
256255adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → -π < (𝑄‘(𝐼 + 1)))
257161adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ≤ π)
258252, 253, 254, 256, 257eliocd 43014 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ (-π(,]π))
259 simpr 485 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹)
260258, 259eldifd 3903 . . . . . . 7 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))
261251, 260jca 512 . . . . . 6 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
262 eleq1 2828 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝑥 ∈ ((-π(,]π) ∖ dom 𝐹) ↔ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)))
263262anbi2d 629 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) ↔ (𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹))))
264 oveq2 7277 . . . . . . . . . . 11 (𝑥 = (𝑄‘(𝐼 + 1)) → (-∞(,)𝑥) = (-∞(,)(𝑄‘(𝐼 + 1))))
265264reseq2d 5889 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → (𝐹 ↾ (-∞(,)𝑥)) = (𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))))
266 id 22 . . . . . . . . . 10 (𝑥 = (𝑄‘(𝐼 + 1)) → 𝑥 = (𝑄‘(𝐼 + 1)))
267265, 266oveq12d 7287 . . . . . . . . 9 (𝑥 = (𝑄‘(𝐼 + 1)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) = ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))))
268267neeq1d 3005 . . . . . . . 8 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅ ↔ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
269263, 268imbi12d 345 . . . . . . 7 (𝑥 = (𝑄‘(𝐼 + 1)) → (((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅) ↔ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)))
270 fourierdlem46.llim . . . . . . 7 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
271269, 270vtoclg 3504 . . . . . 6 ((𝑄‘(𝐼 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
272250, 261, 271sylc 65 . . . . 5 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
273 ssn0 4340 . . . . 5 ((((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ⊆ (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ∧ ((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
274249, 272, 273sylancr 587 . . . 4 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → (((𝐹 ↾ (-∞(,)(𝑄‘(𝐼 + 1)))) ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
275248, 274eqnetrd 3013 . . 3 ((𝜑 ∧ ¬ (𝑄‘(𝐼 + 1)) ∈ dom 𝐹) → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
276238, 275pm2.61dan 810 . 2 (𝜑 → ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅)
277182, 276jca 512 1 (𝜑 → (((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) lim (𝑄‘(𝐼 + 1))) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  cdif 3889  cun 3890  wss 3892  c0 4262  {ctp 4571   class class class wbr 5079  dom cdm 5589  ran crn 5590  cres 5591   Fn wfn 6426  wf 6427  cfv 6431   Isom wiso 6432  (class class class)co 7269  cc 10868  cr 10869  0cc0 10870  1c1 10871   + caddc 10873  +∞cpnf 11005  -∞cmnf 11006  *cxr 11007   < clt 11008  cle 11009  -cneg 11204  cz 12317  (,)cioo 13076  (,]cioc 13077  [,)cico 13078  [,]cicc 13079  ...cfz 13236  ..^cfzo 13379  πcpi 15772  cnccncf 24035   lim climc 25022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8479  df-map 8598  df-pm 8599  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-fi 9146  df-sup 9177  df-inf 9178  df-oi 9245  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-ioc 13081  df-ico 13082  df-icc 13083  df-fz 13237  df-fzo 13380  df-fl 13508  df-seq 13718  df-exp 13779  df-fac 13984  df-bc 14013  df-hash 14041  df-shft 14774  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-limsup 15176  df-clim 15193  df-rlim 15194  df-sum 15394  df-ef 15773  df-sin 15775  df-cos 15776  df-pi 15778  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-rest 17129  df-topn 17130  df-0g 17148  df-gsum 17149  df-topgen 17150  df-pt 17151  df-prds 17154  df-xrs 17209  df-qtop 17214  df-imas 17215  df-xps 17217  df-mre 17291  df-mrc 17292  df-acs 17294  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-mulg 18697  df-cntz 18919  df-cmn 19384  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-fbas 20590  df-fg 20591  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-ntr 22167  df-cls 22168  df-nei 22245  df-lp 22283  df-perf 22284  df-cn 22374  df-cnp 22375  df-haus 22462  df-tx 22709  df-hmeo 22902  df-fil 22993  df-fm 23085  df-flim 23086  df-flf 23087  df-xms 23469  df-ms 23470  df-tms 23471  df-cncf 24037  df-limc 25026  df-dv 25027
This theorem is referenced by:  fourierdlem102  43718  fourierdlem114  43730
  Copyright terms: Public domain W3C validator