![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgptps | Structured version Visualization version GIF version |
Description: A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgptps | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptmd 22406 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
2 | tmdtps 22403 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 TopSpctps 21259 TopMndctmd 22397 TopGrpctgp 22398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-nul 5063 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-iota 6149 df-fv 6193 df-ov 6977 df-tmd 22399 df-tgp 22400 |
This theorem is referenced by: tgptopon 22409 istgp2 22418 tsmsinv 22474 tsmssub 22475 tgptsmscls 22476 tgptsmscld 22477 tsmsxplem1 22479 tsmsxp 22481 trgtps 22496 nrgtrg 23017 |
Copyright terms: Public domain | W3C validator |