| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptps | Structured version Visualization version GIF version | ||
| Description: A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgptps | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptmd 24017 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 2 | tmdtps 24014 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 TopSpctps 22870 TopMndctmd 24008 TopGrpctgp 24009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-tmd 24010 df-tgp 24011 |
| This theorem is referenced by: tgptopon 24020 istgp2 24029 tsmsinv 24086 tsmssub 24087 tgptsmscls 24088 tgptsmscld 24089 tsmsxplem1 24091 tsmsxp 24093 trgtps 24108 nrgtrg 24629 |
| Copyright terms: Public domain | W3C validator |