MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptps Structured version   Visualization version   GIF version

Theorem tgptps 23977
Description: A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgptps (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)

Proof of Theorem tgptps
StepHypRef Expression
1 tgptmd 23976 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tmdtps 23973 . 2 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
31, 2syl 17 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  TopSpctps 22827  TopMndctmd 23967  TopGrpctgp 23968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417  df-tmd 23969  df-tgp 23970
This theorem is referenced by:  tgptopon  23979  istgp2  23988  tsmsinv  24045  tsmssub  24046  tgptsmscls  24047  tgptsmscld  24048  tsmsxplem1  24050  tsmsxp  24052  trgtps  24067  nrgtrg  24600
  Copyright terms: Public domain W3C validator