Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskurn | Structured version Visualization version GIF version |
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
tskurn | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ Tarski) | |
2 | simp1r 1196 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → Tr 𝑇) | |
3 | frn 6510 | . . . 4 ⊢ (𝐹:𝐴⟶𝑇 → ran 𝐹 ⊆ 𝑇) | |
4 | 3 | 3ad2ant3 1133 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ⊆ 𝑇) |
5 | tskwe2 10247 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) | |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ dom card) |
7 | simp2 1135 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ 𝑇) | |
8 | trss 5152 | . . . . . . 7 ⊢ (Tr 𝑇 → (𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇)) | |
9 | 2, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ⊆ 𝑇) |
10 | ssnum 9513 | . . . . . 6 ⊢ ((𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ dom card) | |
11 | 6, 9, 10 | syl2anc 587 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ dom card) |
12 | ffn 6504 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹 Fn 𝐴) | |
13 | dffn4 6588 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
14 | 12, 13 | sylib 221 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹:𝐴–onto→ran 𝐹) |
15 | 14 | 3ad2ant3 1133 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐹:𝐴–onto→ran 𝐹) |
16 | fodomnum 9531 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→ran 𝐹 → ran 𝐹 ≼ 𝐴)) | |
17 | 11, 15, 16 | sylc 65 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≼ 𝐴) |
18 | tsksdom 10230 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) | |
19 | 1, 7, 18 | syl2anc 587 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ≺ 𝑇) |
20 | domsdomtr 8688 | . . . 4 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇) → ran 𝐹 ≺ 𝑇) | |
21 | 17, 19, 20 | syl2anc 587 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≺ 𝑇) |
22 | tskssel 10231 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇) → ran 𝐹 ∈ 𝑇) | |
23 | 1, 4, 21, 22 | syl3anc 1369 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ∈ 𝑇) |
24 | tskuni 10257 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇) → ∪ ran 𝐹 ∈ 𝑇) | |
25 | 1, 2, 23, 24 | syl3anc 1369 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 ∈ wcel 2112 ⊆ wss 3861 ∪ cuni 4802 class class class wbr 5037 Tr wtr 5143 dom cdm 5529 ran crn 5530 Fn wfn 6336 ⟶wf 6337 –onto→wfo 6339 ≼ cdom 8539 ≺ csdm 8540 cardccrd 9411 Tarskictsk 10222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-ac2 9937 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-smo 8000 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-oi 9021 df-har 9068 df-r1 9240 df-card 9415 df-aleph 9416 df-cf 9417 df-acn 9418 df-ac 9590 df-wina 10158 df-ina 10159 df-tsk 10223 |
This theorem is referenced by: grutsk1 10295 |
Copyright terms: Public domain | W3C validator |