| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskurn | Structured version Visualization version GIF version | ||
| Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskurn | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ Tarski) | |
| 2 | simp1r 1199 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → Tr 𝑇) | |
| 3 | frn 6658 | . . . 4 ⊢ (𝐹:𝐴⟶𝑇 → ran 𝐹 ⊆ 𝑇) | |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ⊆ 𝑇) |
| 5 | tskwe2 10664 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) | |
| 6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ dom card) |
| 7 | simp2 1137 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ 𝑇) | |
| 8 | trss 5208 | . . . . . . 7 ⊢ (Tr 𝑇 → (𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇)) | |
| 9 | 2, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ⊆ 𝑇) |
| 10 | ssnum 9930 | . . . . . 6 ⊢ ((𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ dom card) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ dom card) |
| 12 | ffn 6651 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹 Fn 𝐴) | |
| 13 | dffn4 6741 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹:𝐴–onto→ran 𝐹) |
| 15 | 14 | 3ad2ant3 1135 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐹:𝐴–onto→ran 𝐹) |
| 16 | fodomnum 9948 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→ran 𝐹 → ran 𝐹 ≼ 𝐴)) | |
| 17 | 11, 15, 16 | sylc 65 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≼ 𝐴) |
| 18 | tsksdom 10647 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) | |
| 19 | 1, 7, 18 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ≺ 𝑇) |
| 20 | domsdomtr 9025 | . . . 4 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇) → ran 𝐹 ≺ 𝑇) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≺ 𝑇) |
| 22 | tskssel 10648 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇) → ran 𝐹 ∈ 𝑇) | |
| 23 | 1, 4, 21, 22 | syl3anc 1373 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ∈ 𝑇) |
| 24 | tskuni 10674 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇) → ∪ ran 𝐹 ∈ 𝑇) | |
| 25 | 1, 2, 23, 24 | syl3anc 1373 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 class class class wbr 5091 Tr wtr 5198 dom cdm 5616 ran crn 5617 Fn wfn 6476 ⟶wf 6477 –onto→wfo 6479 ≼ cdom 8867 ≺ csdm 8868 cardccrd 9828 Tarskictsk 10639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-r1 9657 df-card 9832 df-aleph 9833 df-cf 9834 df-acn 9835 df-ac 10007 df-wina 10575 df-ina 10576 df-tsk 10640 |
| This theorem is referenced by: grutsk1 10712 |
| Copyright terms: Public domain | W3C validator |