MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskurn Structured version   Visualization version   GIF version

Theorem tskurn 10213
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskurn (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)

Proof of Theorem tskurn
StepHypRef Expression
1 simp1l 1193 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ Tarski)
2 simp1r 1194 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → Tr 𝑇)
3 frn 6522 . . . 4 (𝐹:𝐴𝑇 → ran 𝐹𝑇)
433ad2ant3 1131 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
5 tskwe2 10197 . . . . . . 7 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
61, 5syl 17 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ dom card)
7 simp2 1133 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
8 trss 5183 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
92, 7, 8sylc 65 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
10 ssnum 9467 . . . . . 6 ((𝑇 ∈ dom card ∧ 𝐴𝑇) → 𝐴 ∈ dom card)
116, 9, 10syl2anc 586 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴 ∈ dom card)
12 ffn 6516 . . . . . . 7 (𝐹:𝐴𝑇𝐹 Fn 𝐴)
13 dffn4 6598 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1412, 13sylib 220 . . . . . 6 (𝐹:𝐴𝑇𝐹:𝐴onto→ran 𝐹)
15143ad2ant3 1131 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐹:𝐴onto→ran 𝐹)
16 fodomnum 9485 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto→ran 𝐹 → ran 𝐹𝐴))
1711, 15, 16sylc 65 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝐴)
18 tsksdom 10180 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
191, 7, 18syl2anc 586 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
20 domsdomtr 8654 . . . 4 ((ran 𝐹𝐴𝐴𝑇) → ran 𝐹𝑇)
2117, 19, 20syl2anc 586 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
22 tskssel 10181 . . 3 ((𝑇 ∈ Tarski ∧ ran 𝐹𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
231, 4, 21, 22syl3anc 1367 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
24 tskuni 10207 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
251, 2, 23, 24syl3anc 1367 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wss 3938   cuni 4840   class class class wbr 5068  Tr wtr 5174  dom cdm 5557  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355  cdom 8509  csdm 8510  cardccrd 9366  Tarskictsk 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-smo 7985  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-har 9024  df-r1 9195  df-card 9370  df-aleph 9371  df-cf 9372  df-acn 9373  df-ac 9544  df-wina 10108  df-ina 10109  df-tsk 10173
This theorem is referenced by:  grutsk1  10245
  Copyright terms: Public domain W3C validator