| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskurn | Structured version Visualization version GIF version | ||
| Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskurn | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ Tarski) | |
| 2 | simp1r 1199 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → Tr 𝑇) | |
| 3 | frn 6665 | . . . 4 ⊢ (𝐹:𝐴⟶𝑇 → ran 𝐹 ⊆ 𝑇) | |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ⊆ 𝑇) |
| 5 | tskwe2 10673 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) | |
| 6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ dom card) |
| 7 | simp2 1137 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ 𝑇) | |
| 8 | trss 5212 | . . . . . . 7 ⊢ (Tr 𝑇 → (𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇)) | |
| 9 | 2, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ⊆ 𝑇) |
| 10 | ssnum 9939 | . . . . . 6 ⊢ ((𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ dom card) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ dom card) |
| 12 | ffn 6658 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹 Fn 𝐴) | |
| 13 | dffn4 6748 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹:𝐴–onto→ran 𝐹) |
| 15 | 14 | 3ad2ant3 1135 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐹:𝐴–onto→ran 𝐹) |
| 16 | fodomnum 9957 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→ran 𝐹 → ran 𝐹 ≼ 𝐴)) | |
| 17 | 11, 15, 16 | sylc 65 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≼ 𝐴) |
| 18 | tsksdom 10656 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) | |
| 19 | 1, 7, 18 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ≺ 𝑇) |
| 20 | domsdomtr 9034 | . . . 4 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇) → ran 𝐹 ≺ 𝑇) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≺ 𝑇) |
| 22 | tskssel 10657 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇) → ran 𝐹 ∈ 𝑇) | |
| 23 | 1, 4, 21, 22 | syl3anc 1373 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ∈ 𝑇) |
| 24 | tskuni 10683 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇) → ∪ ran 𝐹 ∈ 𝑇) | |
| 25 | 1, 2, 23, 24 | syl3anc 1373 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4860 class class class wbr 5095 Tr wtr 5202 dom cdm 5621 ran crn 5622 Fn wfn 6483 ⟶wf 6484 –onto→wfo 6486 ≼ cdom 8875 ≺ csdm 8876 cardccrd 9837 Tarskictsk 10648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-ac2 10363 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-smo 8274 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-oi 9405 df-har 9452 df-r1 9666 df-card 9841 df-aleph 9842 df-cf 9843 df-acn 9844 df-ac 10016 df-wina 10584 df-ina 10585 df-tsk 10649 |
| This theorem is referenced by: grutsk1 10721 |
| Copyright terms: Public domain | W3C validator |