MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskurn Structured version   Visualization version   GIF version

Theorem tskurn 10545
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskurn (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)

Proof of Theorem tskurn
StepHypRef Expression
1 simp1l 1196 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ Tarski)
2 simp1r 1197 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → Tr 𝑇)
3 frn 6607 . . . 4 (𝐹:𝐴𝑇 → ran 𝐹𝑇)
433ad2ant3 1134 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
5 tskwe2 10529 . . . . . . 7 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
61, 5syl 17 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ dom card)
7 simp2 1136 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
8 trss 5200 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
92, 7, 8sylc 65 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
10 ssnum 9795 . . . . . 6 ((𝑇 ∈ dom card ∧ 𝐴𝑇) → 𝐴 ∈ dom card)
116, 9, 10syl2anc 584 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴 ∈ dom card)
12 ffn 6600 . . . . . . 7 (𝐹:𝐴𝑇𝐹 Fn 𝐴)
13 dffn4 6694 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1412, 13sylib 217 . . . . . 6 (𝐹:𝐴𝑇𝐹:𝐴onto→ran 𝐹)
15143ad2ant3 1134 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐹:𝐴onto→ran 𝐹)
16 fodomnum 9813 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto→ran 𝐹 → ran 𝐹𝐴))
1711, 15, 16sylc 65 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝐴)
18 tsksdom 10512 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
191, 7, 18syl2anc 584 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
20 domsdomtr 8899 . . . 4 ((ran 𝐹𝐴𝐴𝑇) → ran 𝐹𝑇)
2117, 19, 20syl2anc 584 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
22 tskssel 10513 . . 3 ((𝑇 ∈ Tarski ∧ ran 𝐹𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
231, 4, 21, 22syl3anc 1370 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
24 tskuni 10539 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
251, 2, 23, 24syl3anc 1370 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wss 3887   cuni 4839   class class class wbr 5074  Tr wtr 5191  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cdom 8731  csdm 8732  cardccrd 9693  Tarskictsk 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-smo 8177  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-har 9316  df-r1 9522  df-card 9697  df-aleph 9698  df-cf 9699  df-acn 9700  df-ac 9872  df-wina 10440  df-ina 10441  df-tsk 10505
This theorem is referenced by:  grutsk1  10577
  Copyright terms: Public domain W3C validator