MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskurn Structured version   Visualization version   GIF version

Theorem tskurn 10263
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskurn (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)

Proof of Theorem tskurn
StepHypRef Expression
1 simp1l 1195 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ Tarski)
2 simp1r 1196 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → Tr 𝑇)
3 frn 6510 . . . 4 (𝐹:𝐴𝑇 → ran 𝐹𝑇)
433ad2ant3 1133 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
5 tskwe2 10247 . . . . . . 7 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
61, 5syl 17 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝑇 ∈ dom card)
7 simp2 1135 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
8 trss 5152 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
92, 7, 8sylc 65 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
10 ssnum 9513 . . . . . 6 ((𝑇 ∈ dom card ∧ 𝐴𝑇) → 𝐴 ∈ dom card)
116, 9, 10syl2anc 587 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴 ∈ dom card)
12 ffn 6504 . . . . . . 7 (𝐹:𝐴𝑇𝐹 Fn 𝐴)
13 dffn4 6588 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1412, 13sylib 221 . . . . . 6 (𝐹:𝐴𝑇𝐹:𝐴onto→ran 𝐹)
15143ad2ant3 1133 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐹:𝐴onto→ran 𝐹)
16 fodomnum 9531 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto→ran 𝐹 → ran 𝐹𝐴))
1711, 15, 16sylc 65 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝐴)
18 tsksdom 10230 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
191, 7, 18syl2anc 587 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → 𝐴𝑇)
20 domsdomtr 8688 . . . 4 ((ran 𝐹𝐴𝐴𝑇) → ran 𝐹𝑇)
2117, 19, 20syl2anc 587 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
22 tskssel 10231 . . 3 ((𝑇 ∈ Tarski ∧ ran 𝐹𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
231, 4, 21, 22syl3anc 1369 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
24 tskuni 10257 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹𝑇) → ran 𝐹𝑇)
251, 2, 23, 24syl3anc 1369 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐹:𝐴𝑇) → ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1085  wcel 2112  wss 3861   cuni 4802   class class class wbr 5037  Tr wtr 5143  dom cdm 5529  ran crn 5530   Fn wfn 6336  wf 6337  ontowfo 6339  cdom 8539  csdm 8540  cardccrd 9411  Tarskictsk 10222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-ac2 9937
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-smo 8000  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-oi 9021  df-har 9068  df-r1 9240  df-card 9415  df-aleph 9416  df-cf 9417  df-acn 9418  df-ac 9590  df-wina 10158  df-ina 10159  df-tsk 10223
This theorem is referenced by:  grutsk1  10295
  Copyright terms: Public domain W3C validator