Step | Hyp | Ref
| Expression |
1 | | simp1l 1195 |
. 2
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π β Tarski) |
2 | | simp1r 1196 |
. 2
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β Tr π) |
3 | | frn 6725 |
. . . 4
β’ (πΉ:π΄βΆπ β ran πΉ β π) |
4 | 3 | 3ad2ant3 1133 |
. . 3
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β ran πΉ β π) |
5 | | tskwe2 10772 |
. . . . . . 7
β’ (π β Tarski β π β dom
card) |
6 | 1, 5 | syl 17 |
. . . . . 6
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π β dom card) |
7 | | simp2 1135 |
. . . . . . 7
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π΄ β π) |
8 | | trss 5277 |
. . . . . . 7
β’ (Tr π β (π΄ β π β π΄ β π)) |
9 | 2, 7, 8 | sylc 65 |
. . . . . 6
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π΄ β π) |
10 | | ssnum 10038 |
. . . . . 6
β’ ((π β dom card β§ π΄ β π) β π΄ β dom card) |
11 | 6, 9, 10 | syl2anc 582 |
. . . . 5
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π΄ β dom card) |
12 | | ffn 6718 |
. . . . . . 7
β’ (πΉ:π΄βΆπ β πΉ Fn π΄) |
13 | | dffn4 6812 |
. . . . . . 7
β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
14 | 12, 13 | sylib 217 |
. . . . . 6
β’ (πΉ:π΄βΆπ β πΉ:π΄βontoβran πΉ) |
15 | 14 | 3ad2ant3 1133 |
. . . . 5
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β πΉ:π΄βontoβran πΉ) |
16 | | fodomnum 10056 |
. . . . 5
β’ (π΄ β dom card β (πΉ:π΄βontoβran πΉ β ran πΉ βΌ π΄)) |
17 | 11, 15, 16 | sylc 65 |
. . . 4
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β ran πΉ βΌ π΄) |
18 | | tsksdom 10755 |
. . . . 5
β’ ((π β Tarski β§ π΄ β π) β π΄ βΊ π) |
19 | 1, 7, 18 | syl2anc 582 |
. . . 4
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β π΄ βΊ π) |
20 | | domsdomtr 9116 |
. . . 4
β’ ((ran
πΉ βΌ π΄ β§ π΄ βΊ π) β ran πΉ βΊ π) |
21 | 17, 19, 20 | syl2anc 582 |
. . 3
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β ran πΉ βΊ π) |
22 | | tskssel 10756 |
. . 3
β’ ((π β Tarski β§ ran πΉ β π β§ ran πΉ βΊ π) β ran πΉ β π) |
23 | 1, 4, 21, 22 | syl3anc 1369 |
. 2
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β ran πΉ β π) |
24 | | tskuni 10782 |
. 2
β’ ((π β Tarski β§ Tr π β§ ran πΉ β π) β βͺ ran
πΉ β π) |
25 | 1, 2, 23, 24 | syl3anc 1369 |
1
β’ (((π β Tarski β§ Tr π) β§ π΄ β π β§ πΉ:π΄βΆπ) β βͺ ran
πΉ β π) |