![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskurn | Structured version Visualization version GIF version |
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
tskurn | ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1177 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ Tarski) | |
2 | simp1r 1178 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → Tr 𝑇) | |
3 | frn 6352 | . . . 4 ⊢ (𝐹:𝐴⟶𝑇 → ran 𝐹 ⊆ 𝑇) | |
4 | 3 | 3ad2ant3 1115 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ⊆ 𝑇) |
5 | tskwe2 9995 | . . . . . . 7 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) | |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝑇 ∈ dom card) |
7 | simp2 1117 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ 𝑇) | |
8 | trss 5040 | . . . . . . 7 ⊢ (Tr 𝑇 → (𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇)) | |
9 | 2, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ⊆ 𝑇) |
10 | ssnum 9261 | . . . . . 6 ⊢ ((𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ dom card) | |
11 | 6, 9, 10 | syl2anc 576 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ∈ dom card) |
12 | ffn 6346 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹 Fn 𝐴) | |
13 | dffn4 6427 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
14 | 12, 13 | sylib 210 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝑇 → 𝐹:𝐴–onto→ran 𝐹) |
15 | 14 | 3ad2ant3 1115 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐹:𝐴–onto→ran 𝐹) |
16 | fodomnum 9279 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→ran 𝐹 → ran 𝐹 ≼ 𝐴)) | |
17 | 11, 15, 16 | sylc 65 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≼ 𝐴) |
18 | tsksdom 9978 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) | |
19 | 1, 7, 18 | syl2anc 576 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → 𝐴 ≺ 𝑇) |
20 | domsdomtr 8450 | . . . 4 ⊢ ((ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇) → ran 𝐹 ≺ 𝑇) | |
21 | 17, 19, 20 | syl2anc 576 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ≺ 𝑇) |
22 | tskssel 9979 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇) → ran 𝐹 ∈ 𝑇) | |
23 | 1, 4, 21, 22 | syl3anc 1351 | . 2 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ran 𝐹 ∈ 𝑇) |
24 | tskuni 10005 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇) → ∪ ran 𝐹 ∈ 𝑇) | |
25 | 1, 2, 23, 24 | syl3anc 1351 | 1 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹:𝐴⟶𝑇) → ∪ ran 𝐹 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 ⊆ wss 3831 ∪ cuni 4713 class class class wbr 4930 Tr wtr 5031 dom cdm 5408 ran crn 5409 Fn wfn 6185 ⟶wf 6186 –onto→wfo 6188 ≼ cdom 8306 ≺ csdm 8307 cardccrd 9160 Tarskictsk 9970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-inf2 8900 ax-ac2 9685 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-iin 4796 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-smo 7789 df-recs 7814 df-rdg 7852 df-1o 7907 df-2o 7908 df-oadd 7911 df-er 8091 df-map 8210 df-ixp 8262 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-oi 8771 df-har 8819 df-r1 8989 df-card 9164 df-aleph 9165 df-cf 9166 df-acn 9167 df-ac 9338 df-wina 9906 df-ina 9907 df-tsk 9971 |
This theorem is referenced by: grutsk1 10043 |
Copyright terms: Public domain | W3C validator |