| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskpr | Structured version Visualization version GIF version | ||
| Description: If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskpr | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
| 2 | prssi 4770 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) | |
| 3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) |
| 4 | prfi 9208 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 5 | isfinite 9542 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ {𝐴, 𝐵} ≺ ω |
| 7 | ne0i 4288 | . . . . 5 ⊢ (𝐴 ∈ 𝑇 → 𝑇 ≠ ∅) | |
| 8 | tskinf 10660 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) | |
| 9 | 7, 8 | sylan2 593 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → ω ≼ 𝑇) |
| 10 | sdomdomtr 9023 | . . . 4 ⊢ (({𝐴, 𝐵} ≺ ω ∧ ω ≼ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) | |
| 11 | 6, 9, 10 | sylancr 587 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
| 12 | 11 | 3adant3 1132 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
| 13 | tskssel 10648 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝐴, 𝐵} ⊆ 𝑇 ∧ {𝐴, 𝐵} ≺ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) | |
| 14 | 1, 3, 12, 13 | syl3anc 1373 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 {cpr 4575 class class class wbr 5089 ωcom 7796 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 Tarskictsk 10639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-r1 9657 df-tsk 10640 |
| This theorem is referenced by: tskop 10662 tskwun 10675 tskun 10677 grutsk1 10712 |
| Copyright terms: Public domain | W3C validator |