MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpr Structured version   Visualization version   GIF version

Theorem tskpr 10699
Description: If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskpr ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)

Proof of Theorem tskpr
StepHypRef Expression
1 simp1 1136 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → 𝑇 ∈ Tarski)
2 prssi 4781 . . 3 ((𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ⊆ 𝑇)
323adant1 1130 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ⊆ 𝑇)
4 prfi 9250 . . . . 5 {𝐴, 𝐵} ∈ Fin
5 isfinite 9581 . . . . 5 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
64, 5mpbi 230 . . . 4 {𝐴, 𝐵} ≺ ω
7 ne0i 4300 . . . . 5 (𝐴𝑇𝑇 ≠ ∅)
8 tskinf 10698 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)
97, 8sylan2 593 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → ω ≼ 𝑇)
10 sdomdomtr 9051 . . . 4 (({𝐴, 𝐵} ≺ ω ∧ ω ≼ 𝑇) → {𝐴, 𝐵} ≺ 𝑇)
116, 9, 10sylancr 587 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴, 𝐵} ≺ 𝑇)
12113adant3 1132 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ≺ 𝑇)
13 tskssel 10686 . 2 ((𝑇 ∈ Tarski ∧ {𝐴, 𝐵} ⊆ 𝑇 ∧ {𝐴, 𝐵} ≺ 𝑇) → {𝐴, 𝐵} ∈ 𝑇)
141, 3, 12, 13syl3anc 1373 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wss 3911  c0 4292  {cpr 4587   class class class wbr 5102  ωcom 7822  cdom 8893  csdm 8894  Fincfn 8895  Tarskictsk 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-r1 9693  df-tsk 10678
This theorem is referenced by:  tskop  10700  tskwun  10713  tskun  10715  grutsk1  10750
  Copyright terms: Public domain W3C validator