MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpr Structured version   Visualization version   GIF version

Theorem tskpr 10762
Description: If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskpr ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)

Proof of Theorem tskpr
StepHypRef Expression
1 simp1 1133 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → 𝑇 ∈ Tarski)
2 prssi 4817 . . 3 ((𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ⊆ 𝑇)
323adant1 1127 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ⊆ 𝑇)
4 prfi 9319 . . . . 5 {𝐴, 𝐵} ∈ Fin
5 isfinite 9644 . . . . 5 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
64, 5mpbi 229 . . . 4 {𝐴, 𝐵} ≺ ω
7 ne0i 4327 . . . . 5 (𝐴𝑇𝑇 ≠ ∅)
8 tskinf 10761 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)
97, 8sylan2 592 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → ω ≼ 𝑇)
10 sdomdomtr 9107 . . . 4 (({𝐴, 𝐵} ≺ ω ∧ ω ≼ 𝑇) → {𝐴, 𝐵} ≺ 𝑇)
116, 9, 10sylancr 586 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝐴, 𝐵} ≺ 𝑇)
12113adant3 1129 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ≺ 𝑇)
13 tskssel 10749 . 2 ((𝑇 ∈ Tarski ∧ {𝐴, 𝐵} ⊆ 𝑇 ∧ {𝐴, 𝐵} ≺ 𝑇) → {𝐴, 𝐵} ∈ 𝑇)
141, 3, 12, 13syl3anc 1368 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098  wne 2932  wss 3941  c0 4315  {cpr 4623   class class class wbr 5139  ωcom 7849  cdom 8934  csdm 8935  Fincfn 8936  Tarskictsk 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-r1 9756  df-tsk 10741
This theorem is referenced by:  tskop  10763  tskwun  10776  tskun  10778  grutsk1  10813
  Copyright terms: Public domain W3C validator