![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskwe2 | Structured version Visualization version GIF version |
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskwe2 | ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4469 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇) | |
2 | tskssel 10032 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) | |
3 | 2 | 3exp 1112 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑦 ⊆ 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
4 | 1, 3 | syl5 34 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
5 | 4 | ralrimiv 3150 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) |
6 | rabss 3975 | . . 3 ⊢ ({𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) | |
7 | 5, 6 | sylibr 235 | . 2 ⊢ (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) |
8 | tskwe 9232 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card) | |
9 | 7, 8 | mpdan 683 | 1 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2083 ∀wral 3107 {crab 3111 ⊆ wss 3865 𝒫 cpw 4459 class class class wbr 4968 dom cdm 5450 ≺ csdm 8363 cardccrd 9217 Tarskictsk 10023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-ord 6076 df-on 6077 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-card 9221 df-tsk 10024 |
This theorem is referenced by: tskurn 10064 inaprc 10111 |
Copyright terms: Public domain | W3C validator |