MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe2 Structured version   Visualization version   GIF version

Theorem tskwe2 10460
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskwe2 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)

Proof of Theorem tskwe2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4539 . . . . 5 (𝑦 ∈ 𝒫 𝑇𝑦𝑇)
2 tskssel 10444 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑦𝑇𝑦𝑇) → 𝑦𝑇)
323exp 1117 . . . . 5 (𝑇 ∈ Tarski → (𝑦𝑇 → (𝑦𝑇𝑦𝑇)))
41, 3syl5 34 . . . 4 (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦𝑇𝑦𝑇)))
54ralrimiv 3106 . . 3 (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
6 rabss 4001 . . 3 ({𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
75, 6sylibr 233 . 2 (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇)
8 tskwe 9639 . 2 ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card)
97, 8mpdan 683 1 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  {crab 3067  wss 3883  𝒫 cpw 4530   class class class wbr 5070  dom cdm 5580  csdm 8690  cardccrd 9624  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-tsk 10436
This theorem is referenced by:  tskurn  10476  inaprc  10523
  Copyright terms: Public domain W3C validator