MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe2 Structured version   Visualization version   GIF version

Theorem tskwe2 10811
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskwe2 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)

Proof of Theorem tskwe2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4612 . . . . 5 (𝑦 ∈ 𝒫 𝑇𝑦𝑇)
2 tskssel 10795 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑦𝑇𝑦𝑇) → 𝑦𝑇)
323exp 1118 . . . . 5 (𝑇 ∈ Tarski → (𝑦𝑇 → (𝑦𝑇𝑦𝑇)))
41, 3syl5 34 . . . 4 (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦𝑇𝑦𝑇)))
54ralrimiv 3143 . . 3 (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
6 rabss 4082 . . 3 ({𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
75, 6sylibr 234 . 2 (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇)
8 tskwe 9988 . 2 ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card)
97, 8mpdan 687 1 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3059  {crab 3433  wss 3963  𝒫 cpw 4605   class class class wbr 5148  dom cdm 5689  csdm 8983  cardccrd 9973  Tarskictsk 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-card 9977  df-tsk 10787
This theorem is referenced by:  tskurn  10827  inaprc  10874
  Copyright terms: Public domain W3C validator