MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe2 Structured version   Visualization version   GIF version

Theorem tskwe2 10733
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskwe2 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)

Proof of Theorem tskwe2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4573 . . . . 5 (𝑦 ∈ 𝒫 𝑇𝑦𝑇)
2 tskssel 10717 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑦𝑇𝑦𝑇) → 𝑦𝑇)
323exp 1119 . . . . 5 (𝑇 ∈ Tarski → (𝑦𝑇 → (𝑦𝑇𝑦𝑇)))
41, 3syl5 34 . . . 4 (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦𝑇𝑦𝑇)))
54ralrimiv 3125 . . 3 (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
6 rabss 4038 . . 3 ({𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦𝑇𝑦𝑇))
75, 6sylibr 234 . 2 (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇)
8 tskwe 9910 . 2 ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇𝑦𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card)
97, 8mpdan 687 1 (𝑇 ∈ Tarski → 𝑇 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045  {crab 3408  wss 3917  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  csdm 8920  cardccrd 9895  Tarskictsk 10708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-card 9899  df-tsk 10709
This theorem is referenced by:  tskurn  10749  inaprc  10796
  Copyright terms: Public domain W3C validator