| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwe2 | Structured version Visualization version GIF version | ||
| Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskwe2 | ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4573 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇) | |
| 2 | tskssel 10717 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) | |
| 3 | 2 | 3exp 1119 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑦 ⊆ 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
| 4 | 1, 3 | syl5 34 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
| 5 | 4 | ralrimiv 3125 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) |
| 6 | rabss 4038 | . . 3 ⊢ ({𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) |
| 8 | tskwe 9910 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card) | |
| 9 | 7, 8 | mpdan 687 | 1 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 dom cdm 5641 ≺ csdm 8920 cardccrd 9895 Tarskictsk 10708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-card 9899 df-tsk 10709 |
| This theorem is referenced by: tskurn 10749 inaprc 10796 |
| Copyright terms: Public domain | W3C validator |