Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskwe2 | Structured version Visualization version GIF version |
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskwe2 | ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇) | |
2 | tskssel 10444 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) | |
3 | 2 | 3exp 1117 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑦 ⊆ 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
4 | 1, 3 | syl5 34 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
5 | 4 | ralrimiv 3106 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) |
6 | rabss 4001 | . . 3 ⊢ ({𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) |
8 | tskwe 9639 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card) | |
9 | 7, 8 | mpdan 683 | 1 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 dom cdm 5580 ≺ csdm 8690 cardccrd 9624 Tarskictsk 10435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-tsk 10436 |
This theorem is referenced by: tskurn 10476 inaprc 10523 |
Copyright terms: Public domain | W3C validator |