| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskwe2 | Structured version Visualization version GIF version | ||
| Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskwe2 | ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4570 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇) | |
| 2 | tskssel 10710 | . . . . . 6 ⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) | |
| 3 | 2 | 3exp 1119 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑦 ⊆ 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
| 4 | 1, 3 | syl5 34 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑦 ∈ 𝒫 𝑇 → (𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇))) |
| 5 | 4 | ralrimiv 3124 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) |
| 6 | rabss 4035 | . . 3 ⊢ ({𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝒫 𝑇(𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇)) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝑇 ∈ Tarski → {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) |
| 8 | tskwe 9903 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇} ⊆ 𝑇) → 𝑇 ∈ dom card) | |
| 9 | 7, 8 | mpdan 687 | 1 ⊢ (𝑇 ∈ Tarski → 𝑇 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 dom cdm 5638 ≺ csdm 8917 cardccrd 9888 Tarskictsk 10701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-card 9892 df-tsk 10702 |
| This theorem is referenced by: tskurn 10742 inaprc 10789 |
| Copyright terms: Public domain | W3C validator |