Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version |
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8718 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-br 5071 df-sdom 8694 |
This theorem is referenced by: bren2 8726 domdifsn 8795 sucdom2 8822 sdomnsym 8838 domnsym 8839 sdomirr 8850 php5 8901 phpeqd 8902 pssinf 8962 f1finf1o 8975 isfinite2 9002 cardom 9675 pm54.43 9690 pr2ne 9692 alephdom 9768 cdainflem 9874 ackbij1b 9926 isfin4p1 10002 fin23lem25 10011 fin67 10082 axcclem 10144 canthp1lem2 10340 gchinf 10344 pwfseqlem4 10349 tskssel 10444 1nprm 16312 en2top 22043 domalom 35502 pibt2 35515 rp-isfinite6 41023 ensucne0OLD 41035 iscard5 41039 |
Copyright terms: Public domain | W3C validator |