| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8994 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5124 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-br 5125 df-sdom 8967 |
| This theorem is referenced by: bren2 9002 domdifsn 9073 sucdom2OLD 9101 sdomnsym 9117 domnsym 9118 sdomirr 9133 domnsymfi 9219 sucdom2 9222 php5 9230 phpeqd 9231 phpeqdOLD 9239 1sdom2dom 9260 pssinf 9269 f1finf1o 9282 f1finf1oOLD 9283 isfinite2 9311 cardom 10005 pm54.43 10020 pr2neOLD 10024 alephdom 10100 cdainflem 10207 ackbij1b 10257 isfin4p1 10334 fin23lem25 10343 fin67 10414 axcclem 10476 canthp1lem2 10672 gchinf 10676 pwfseqlem4 10681 tskssel 10776 1nprm 16703 en2top 22928 domalom 37427 pibt2 37440 rp-isfinite6 43509 ensucne0OLD 43521 iscard5 43527 omiscard 43534 |
| Copyright terms: Public domain | W3C validator |