| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8923 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-br 5103 df-sdom 8898 |
| This theorem is referenced by: bren2 8931 domdifsn 9001 sdomnsym 9043 domnsym 9044 sdomirr 9055 domnsymfi 9141 sucdom2 9144 php5 9152 phpeqd 9153 1sdom2dom 9170 pssinf 9179 f1finf1o 9192 f1finf1oOLD 9193 isfinite2 9221 cardom 9915 pm54.43 9930 pr2neOLD 9934 alephdom 10010 cdainflem 10117 ackbij1b 10167 isfin4p1 10244 fin23lem25 10253 fin67 10324 axcclem 10386 canthp1lem2 10582 gchinf 10586 pwfseqlem4 10591 tskssel 10686 1nprm 16625 en2top 22905 domalom 37385 pibt2 37398 rp-isfinite6 43500 ensucne0OLD 43512 iscard5 43518 omiscard 43525 |
| Copyright terms: Public domain | W3C validator |