MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomnen Structured version   Visualization version   GIF version

Theorem sdomnen 9000
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.)
Assertion
Ref Expression
sdomnen (𝐴𝐵 → ¬ 𝐴𝐵)

Proof of Theorem sdomnen
StepHypRef Expression
1 brsdom 8994 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 496 1 (𝐴𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   class class class wbr 5124  cen 8961  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-br 5125  df-sdom 8967
This theorem is referenced by:  bren2  9002  domdifsn  9073  sucdom2OLD  9101  sdomnsym  9117  domnsym  9118  sdomirr  9133  domnsymfi  9219  sucdom2  9222  php5  9230  phpeqd  9231  phpeqdOLD  9239  1sdom2dom  9260  pssinf  9269  f1finf1o  9282  f1finf1oOLD  9283  isfinite2  9311  cardom  10005  pm54.43  10020  pr2neOLD  10024  alephdom  10100  cdainflem  10207  ackbij1b  10257  isfin4p1  10334  fin23lem25  10343  fin67  10414  axcclem  10476  canthp1lem2  10672  gchinf  10676  pwfseqlem4  10681  tskssel  10776  1nprm  16703  en2top  22928  domalom  37427  pibt2  37440  rp-isfinite6  43509  ensucne0OLD  43521  iscard5  43527  omiscard  43534
  Copyright terms: Public domain W3C validator