| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8900 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5092 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-br 5093 df-sdom 8875 |
| This theorem is referenced by: bren2 8908 domdifsn 8977 sdomnsym 9019 domnsym 9020 sdomirr 9031 domnsymfi 9114 sucdom2 9117 php5 9125 phpeqd 9126 1sdom2dom 9143 pssinf 9151 f1finf1o 9162 isfinite2 9187 cardom 9882 pm54.43 9897 alephdom 9975 cdainflem 10082 ackbij1b 10132 isfin4p1 10209 fin23lem25 10218 fin67 10289 axcclem 10351 canthp1lem2 10547 gchinf 10551 pwfseqlem4 10556 tskssel 10651 1nprm 16590 en2top 22870 domalom 37388 pibt2 37401 rp-isfinite6 43501 ensucne0OLD 43513 iscard5 43519 omiscard 43526 |
| Copyright terms: Public domain | W3C validator |