| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8897 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-br 5090 df-sdom 8872 |
| This theorem is referenced by: bren2 8905 domdifsn 8973 sdomnsym 9015 domnsym 9016 sdomirr 9027 domnsymfi 9109 sucdom2 9112 php5 9120 phpeqd 9121 1sdom2dom 9138 pssinf 9146 f1finf1o 9157 isfinite2 9182 cardom 9879 pm54.43 9894 alephdom 9972 cdainflem 10079 ackbij1b 10129 isfin4p1 10206 fin23lem25 10215 fin67 10286 axcclem 10348 canthp1lem2 10544 gchinf 10548 pwfseqlem4 10553 tskssel 10648 1nprm 16590 en2top 22900 domalom 37448 pibt2 37461 rp-isfinite6 43621 ensucne0OLD 43633 iscard5 43639 omiscard 43646 |
| Copyright terms: Public domain | W3C validator |