Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version |
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8746 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5079 ≈ cen 8713 ≼ cdom 8714 ≺ csdm 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-br 5080 df-sdom 8719 |
This theorem is referenced by: bren2 8754 domdifsn 8824 sucdom2 8851 sdomnsym 8867 domnsym 8868 sdomirr 8883 domnsymfi 8968 php5 8978 phpeqd 8979 phpeqdOLD 8990 pssinf 9011 f1finf1o 9024 isfinite2 9050 cardom 9745 pm54.43 9760 pr2ne 9762 alephdom 9838 cdainflem 9944 ackbij1b 9996 isfin4p1 10072 fin23lem25 10081 fin67 10152 axcclem 10214 canthp1lem2 10410 gchinf 10414 pwfseqlem4 10419 tskssel 10514 1nprm 16382 en2top 22133 domalom 35571 pibt2 35584 rp-isfinite6 41104 ensucne0OLD 41116 iscard5 41120 |
Copyright terms: Public domain | W3C validator |