Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version |
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8763 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-br 5075 df-sdom 8736 |
This theorem is referenced by: bren2 8771 domdifsn 8841 sucdom2OLD 8869 sdomnsym 8885 domnsym 8886 sdomirr 8901 domnsymfi 8986 sucdom2 8989 php5 8997 phpeqd 8998 phpeqdOLD 9008 pssinf 9033 f1finf1o 9046 isfinite2 9072 cardom 9744 pm54.43 9759 pr2ne 9761 alephdom 9837 cdainflem 9943 ackbij1b 9995 isfin4p1 10071 fin23lem25 10080 fin67 10151 axcclem 10213 canthp1lem2 10409 gchinf 10413 pwfseqlem4 10418 tskssel 10513 1nprm 16384 en2top 22135 domalom 35575 pibt2 35588 rp-isfinite6 41125 ensucne0OLD 41137 iscard5 41143 omiscard 41150 |
Copyright terms: Public domain | W3C validator |