| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-br 5108 df-sdom 8921 |
| This theorem is referenced by: bren2 8954 domdifsn 9024 sdomnsym 9066 domnsym 9067 sdomirr 9078 domnsymfi 9164 sucdom2 9167 php5 9175 phpeqd 9176 1sdom2dom 9194 pssinf 9203 f1finf1o 9216 f1finf1oOLD 9217 isfinite2 9245 cardom 9939 pm54.43 9954 pr2neOLD 9958 alephdom 10034 cdainflem 10141 ackbij1b 10191 isfin4p1 10268 fin23lem25 10277 fin67 10348 axcclem 10410 canthp1lem2 10606 gchinf 10610 pwfseqlem4 10615 tskssel 10710 1nprm 16649 en2top 22872 domalom 37392 pibt2 37405 rp-isfinite6 43507 ensucne0OLD 43519 iscard5 43525 omiscard 43532 |
| Copyright terms: Public domain | W3C validator |