MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomnen Structured version   Visualization version   GIF version

Theorem sdomnen 8724
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.)
Assertion
Ref Expression
sdomnen (𝐴𝐵 → ¬ 𝐴𝐵)

Proof of Theorem sdomnen
StepHypRef Expression
1 brsdom 8718 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 496 1 (𝐴𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   class class class wbr 5070  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-br 5071  df-sdom 8694
This theorem is referenced by:  bren2  8726  domdifsn  8795  sucdom2  8822  sdomnsym  8838  domnsym  8839  sdomirr  8850  php5  8901  phpeqd  8902  pssinf  8962  f1finf1o  8975  isfinite2  9002  cardom  9675  pm54.43  9690  pr2ne  9692  alephdom  9768  cdainflem  9874  ackbij1b  9926  isfin4p1  10002  fin23lem25  10011  fin67  10082  axcclem  10144  canthp1lem2  10340  gchinf  10344  pwfseqlem4  10349  tskssel  10444  1nprm  16312  en2top  22043  domalom  35502  pibt2  35515  rp-isfinite6  41023  ensucne0OLD  41035  iscard5  41039
  Copyright terms: Public domain W3C validator