MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomnen Structured version   Visualization version   GIF version

Theorem sdomnen 8903
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.)
Assertion
Ref Expression
sdomnen (𝐴𝐵 → ¬ 𝐴𝐵)

Proof of Theorem sdomnen
StepHypRef Expression
1 brsdom 8897 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 496 1 (𝐴𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   class class class wbr 5089  cen 8866  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-br 5090  df-sdom 8872
This theorem is referenced by:  bren2  8905  domdifsn  8973  sdomnsym  9015  domnsym  9016  sdomirr  9027  domnsymfi  9109  sucdom2  9112  php5  9120  phpeqd  9121  1sdom2dom  9138  pssinf  9146  f1finf1o  9157  isfinite2  9182  cardom  9879  pm54.43  9894  alephdom  9972  cdainflem  10079  ackbij1b  10129  isfin4p1  10206  fin23lem25  10215  fin67  10286  axcclem  10348  canthp1lem2  10544  gchinf  10548  pwfseqlem4  10553  tskssel  10648  1nprm  16590  en2top  22900  domalom  37448  pibt2  37461  rp-isfinite6  43621  ensucne0OLD  43633  iscard5  43639  omiscard  43646
  Copyright terms: Public domain W3C validator