![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomnen | Structured version Visualization version GIF version |
Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomnen | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-br 5167 df-sdom 9006 |
This theorem is referenced by: bren2 9043 domdifsn 9120 sucdom2OLD 9148 sdomnsym 9164 domnsym 9165 sdomirr 9180 domnsymfi 9266 sucdom2 9269 php5 9277 phpeqd 9278 phpeqdOLD 9288 1sdom2dom 9310 pssinf 9319 f1finf1o 9333 f1finf1oOLD 9334 isfinite2 9362 cardom 10055 pm54.43 10070 pr2neOLD 10074 alephdom 10150 cdainflem 10257 ackbij1b 10307 isfin4p1 10384 fin23lem25 10393 fin67 10464 axcclem 10526 canthp1lem2 10722 gchinf 10726 pwfseqlem4 10731 tskssel 10826 1nprm 16726 en2top 23013 domalom 37370 pibt2 37383 rp-isfinite6 43480 ensucne0OLD 43492 iscard5 43498 omiscard 43505 |
Copyright terms: Public domain | W3C validator |