Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsksdom | Structured version Visualization version GIF version |
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tsksdom | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2g 8918 | . 2 ⊢ (𝐴 ∈ 𝑇 → 𝐴 ≺ 𝒫 𝐴) | |
2 | simpl 483 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
3 | tskpwss 10508 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
4 | ssdomg 8786 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝒫 𝐴 ⊆ 𝑇 → 𝒫 𝐴 ≼ 𝑇)) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ≼ 𝑇) |
6 | sdomdomtr 8897 | . 2 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝑇) → 𝐴 ≺ 𝑇) | |
7 | 1, 5, 6 | syl2an2 683 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ≼ cdom 8731 ≺ csdm 8732 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-tsk 10505 |
This theorem is referenced by: 2domtsk 10522 r1tskina 10538 tskuni 10539 tskurn 10545 inaprc 10592 |
Copyright terms: Public domain | W3C validator |