MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksdom Structured version   Visualization version   GIF version

Theorem tsksdom 10443
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksdom ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsksdom
StepHypRef Expression
1 canth2g 8867 . 2 (𝐴𝑇𝐴 ≺ 𝒫 𝐴)
2 simpl 482 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
3 tskpwss 10439 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 ssdomg 8741 . . 3 (𝑇 ∈ Tarski → (𝒫 𝐴𝑇 → 𝒫 𝐴𝑇))
52, 3, 4sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
6 sdomdomtr 8846 . 2 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝑇) → 𝐴𝑇)
71, 5, 6syl2an2 682 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cdom 8689  csdm 8690  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-tsk 10436
This theorem is referenced by:  2domtsk  10453  r1tskina  10469  tskuni  10470  tskurn  10476  inaprc  10523
  Copyright terms: Public domain W3C validator