MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksdom Structured version   Visualization version   GIF version

Theorem tsksdom 10650
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksdom ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsksdom
StepHypRef Expression
1 canth2g 9048 . 2 (𝐴𝑇𝐴 ≺ 𝒫 𝐴)
2 simpl 482 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
3 tskpwss 10646 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 ssdomg 8925 . . 3 (𝑇 ∈ Tarski → (𝒫 𝐴𝑇 → 𝒫 𝐴𝑇))
52, 3, 4sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
6 sdomdomtr 9027 . 2 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝑇) → 𝐴𝑇)
71, 5, 6syl2an2 686 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cdom 8870  csdm 8871  Tarskictsk 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-tsk 10643
This theorem is referenced by:  2domtsk  10660  r1tskina  10676  tskuni  10677  tskurn  10683  inaprc  10730
  Copyright terms: Public domain W3C validator