![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsksdom | Structured version Visualization version GIF version |
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tsksdom | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2g 9133 | . 2 ⊢ (𝐴 ∈ 𝑇 → 𝐴 ≺ 𝒫 𝐴) | |
2 | simpl 481 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
3 | tskpwss 10749 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
4 | ssdomg 8998 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝒫 𝐴 ⊆ 𝑇 → 𝒫 𝐴 ≼ 𝑇)) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ≼ 𝑇) |
6 | sdomdomtr 9112 | . 2 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝑇) → 𝐴 ≺ 𝑇) | |
7 | 1, 5, 6 | syl2an2 682 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 ≼ cdom 8939 ≺ csdm 8940 Tarskictsk 10745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-tsk 10746 |
This theorem is referenced by: 2domtsk 10763 r1tskina 10779 tskuni 10780 tskurn 10786 inaprc 10833 |
Copyright terms: Public domain | W3C validator |