MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksdom Structured version   Visualization version   GIF version

Theorem tsksdom 10753
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksdom ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsksdom
StepHypRef Expression
1 canth2g 9133 . 2 (𝐴𝑇𝐴 ≺ 𝒫 𝐴)
2 simpl 481 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
3 tskpwss 10749 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 ssdomg 8998 . . 3 (𝑇 ∈ Tarski → (𝒫 𝐴𝑇 → 𝒫 𝐴𝑇))
52, 3, 4sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
6 sdomdomtr 9112 . 2 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝑇) → 𝐴𝑇)
71, 5, 6syl2an2 682 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  wss 3947  𝒫 cpw 4601   class class class wbr 5147  cdom 8939  csdm 8940  Tarskictsk 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-tsk 10746
This theorem is referenced by:  2domtsk  10763  r1tskina  10779  tskuni  10780  tskurn  10786  inaprc  10833
  Copyright terms: Public domain W3C validator