Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsksdom | Structured version Visualization version GIF version |
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tsksdom | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2g 9005 | . 2 ⊢ (𝐴 ∈ 𝑇 → 𝐴 ≺ 𝒫 𝐴) | |
2 | simpl 484 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
3 | tskpwss 10618 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
4 | ssdomg 8870 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝒫 𝐴 ⊆ 𝑇 → 𝒫 𝐴 ≼ 𝑇)) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ≼ 𝑇) |
6 | sdomdomtr 8984 | . 2 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝑇) → 𝐴 ≺ 𝑇) | |
7 | 1, 5, 6 | syl2an2 684 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝐴 ≺ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 ⊆ wss 3905 𝒫 cpw 4555 class class class wbr 5100 ≼ cdom 8811 ≺ csdm 8812 Tarskictsk 10614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-tsk 10615 |
This theorem is referenced by: 2domtsk 10632 r1tskina 10648 tskuni 10649 tskurn 10655 inaprc 10702 |
Copyright terms: Public domain | W3C validator |