MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskord Structured version   Visualization version   GIF version

Theorem tskord 10196
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
tskord ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5061 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
21anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝑦𝑇)))
3 eleq1 2900 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
42, 3imbi12d 347 . . . 4 (𝑥 = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇)))
5 breq1 5061 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
65anbi2d 630 . . . . 5 (𝑥 = 𝐴 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝐴𝑇)))
7 eleq1 2900 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7imbi12d 347 . . . 4 (𝑥 = 𝐴 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)))
9 simplrl 775 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑇 ∈ Tarski)
10 onelss 6227 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
11 ssdomg 8549 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1210, 11syld 47 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 409 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1413adantlr 713 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑥)
15 simplrr 776 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑥𝑇)
16 domsdomtr 8646 . . . . . . . . . 10 ((𝑦𝑥𝑥𝑇) → 𝑦𝑇)
1714, 15, 16syl2anc 586 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑇)
18 pm2.27 42 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
199, 17, 18syl2anc 586 . . . . . . . 8 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
2019ralimdva 3177 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ∀𝑦𝑥 𝑦𝑇))
21 dfss3 3955 . . . . . . . . . . 11 (𝑥𝑇 ↔ ∀𝑦𝑥 𝑦𝑇)
22 tskssel 10173 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
23223exp 1115 . . . . . . . . . . 11 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑥𝑇𝑥𝑇)))
2421, 23syl5bir 245 . . . . . . . . . 10 (𝑇 ∈ Tarski → (∀𝑦𝑥 𝑦𝑇 → (𝑥𝑇𝑥𝑇)))
2524com23 86 . . . . . . . . 9 (𝑇 ∈ Tarski → (𝑥𝑇 → (∀𝑦𝑥 𝑦𝑇𝑥𝑇)))
2625imp 409 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2726adantl 484 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2820, 27syld 47 . . . . . 6 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇))
2928ex 415 . . . . 5 (𝑥 ∈ On → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇)))
3029com23 86 . . . 4 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)))
314, 8, 30tfis3 7566 . . 3 (𝐴 ∈ On → ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇))
32313impib 1112 . 2 ((𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
33323com12 1119 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935   class class class wbr 5058  Oncon0 6185  cdom 8501  csdm 8502  Tarskictsk 10164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-tsk 10165
This theorem is referenced by:  tskcard  10197
  Copyright terms: Public domain W3C validator