MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskord Structured version   Visualization version   GIF version

Theorem tskord 10191
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
tskord ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
21anbi2d 631 . . . . 5 (𝑥 = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝑦𝑇)))
3 eleq1 2877 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
42, 3imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇)))
5 breq1 5033 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
65anbi2d 631 . . . . 5 (𝑥 = 𝐴 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝐴𝑇)))
7 eleq1 2877 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7imbi12d 348 . . . 4 (𝑥 = 𝐴 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)))
9 simplrl 776 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑇 ∈ Tarski)
10 onelss 6201 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
11 ssdomg 8538 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1210, 11syld 47 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 410 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1413adantlr 714 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑥)
15 simplrr 777 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑥𝑇)
16 domsdomtr 8636 . . . . . . . . . 10 ((𝑦𝑥𝑥𝑇) → 𝑦𝑇)
1714, 15, 16syl2anc 587 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑇)
18 pm2.27 42 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
199, 17, 18syl2anc 587 . . . . . . . 8 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
2019ralimdva 3144 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ∀𝑦𝑥 𝑦𝑇))
21 dfss3 3903 . . . . . . . . . . 11 (𝑥𝑇 ↔ ∀𝑦𝑥 𝑦𝑇)
22 tskssel 10168 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
23223exp 1116 . . . . . . . . . . 11 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑥𝑇𝑥𝑇)))
2421, 23syl5bir 246 . . . . . . . . . 10 (𝑇 ∈ Tarski → (∀𝑦𝑥 𝑦𝑇 → (𝑥𝑇𝑥𝑇)))
2524com23 86 . . . . . . . . 9 (𝑇 ∈ Tarski → (𝑥𝑇 → (∀𝑦𝑥 𝑦𝑇𝑥𝑇)))
2625imp 410 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2726adantl 485 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2820, 27syld 47 . . . . . 6 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇))
2928ex 416 . . . . 5 (𝑥 ∈ On → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇)))
3029com23 86 . . . 4 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)))
314, 8, 30tfis3 7552 . . 3 (𝐴 ∈ On → ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇))
32313impib 1113 . 2 ((𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
33323com12 1120 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   class class class wbr 5030  Oncon0 6159  cdom 8490  csdm 8491  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-tsk 10160
This theorem is referenced by:  tskcard  10192
  Copyright terms: Public domain W3C validator