| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5145 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≺ 𝑇 ↔ 𝑦 ≺ 𝑇)) |
| 2 | 1 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇))) |
| 3 | | eleq1 2828 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) |
| 4 | 2, 3 | imbi12d 344 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇))) |
| 5 | | breq1 5145 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝑇 ↔ 𝐴 ≺ 𝑇)) |
| 6 | 5 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇))) |
| 7 | | eleq1 2828 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) |
| 8 | 6, 7 | imbi12d 344 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇))) |
| 9 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑇 ∈ Tarski) |
| 10 | | onelss 6425 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
| 11 | | ssdomg 9041 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (𝑦 ⊆ 𝑥 → 𝑦 ≼ 𝑥)) |
| 12 | 10, 11 | syld 47 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ≼ 𝑥)) |
| 13 | 12 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ≼ 𝑥) |
| 14 | 13 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ≼ 𝑥) |
| 15 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑥 ≺ 𝑇) |
| 16 | | domsdomtr 9153 |
. . . . . . . . . 10
⊢ ((𝑦 ≼ 𝑥 ∧ 𝑥 ≺ 𝑇) → 𝑦 ≺ 𝑇) |
| 17 | 14, 15, 16 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ≺ 𝑇) |
| 18 | | pm2.27 42 |
. . . . . . . . 9
⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → (((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇)) |
| 19 | 9, 17, 18 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → (((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇)) |
| 20 | 19 | ralimdva 3166 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇)) |
| 21 | | dfss3 3971 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇) |
| 22 | | tskssel 10798 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ⊆ 𝑇 ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) |
| 23 | 22 | 3exp 1119 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ Tarski → (𝑥 ⊆ 𝑇 → (𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇))) |
| 24 | 21, 23 | biimtrrid 243 |
. . . . . . . . . 10
⊢ (𝑇 ∈ Tarski →
(∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → (𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇))) |
| 25 | 24 | com23 86 |
. . . . . . . . 9
⊢ (𝑇 ∈ Tarski → (𝑥 ≺ 𝑇 → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇))) |
| 26 | 25 | imp 406 |
. . . . . . . 8
⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇)) |
| 27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇)) |
| 28 | 20, 27 | syld 47 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇)) |
| 29 | 28 | ex 412 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
| 30 | 29 | com23 86 |
. . . 4
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇))) |
| 31 | 4, 8, 30 | tfis3 7880 |
. . 3
⊢ (𝐴 ∈ On → ((𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇)) |
| 32 | 31 | 3impib 1116 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
| 33 | 32 | 3com12 1123 |
1
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |