Step | Hyp | Ref
| Expression |
1 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≺ 𝑇 ↔ 𝑦 ≺ 𝑇)) |
2 | 1 | anbi2d 629 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇))) |
3 | | eleq1 2826 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇)) |
4 | 2, 3 | imbi12d 345 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇))) |
5 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝑇 ↔ 𝐴 ≺ 𝑇)) |
6 | 5 | anbi2d 629 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇))) |
7 | | eleq1 2826 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) |
8 | 6, 7 | imbi12d 345 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇))) |
9 | | simplrl 774 |
. . . . . . . . 9
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑇 ∈ Tarski) |
10 | | onelss 6308 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) |
11 | | ssdomg 8786 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (𝑦 ⊆ 𝑥 → 𝑦 ≼ 𝑥)) |
12 | 10, 11 | syld 47 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ≼ 𝑥)) |
13 | 12 | imp 407 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ≼ 𝑥) |
14 | 13 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ≼ 𝑥) |
15 | | simplrr 775 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑥 ≺ 𝑇) |
16 | | domsdomtr 8899 |
. . . . . . . . . 10
⊢ ((𝑦 ≼ 𝑥 ∧ 𝑥 ≺ 𝑇) → 𝑦 ≺ 𝑇) |
17 | 14, 15, 16 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ≺ 𝑇) |
18 | | pm2.27 42 |
. . . . . . . . 9
⊢ ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → (((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇)) |
19 | 9, 17, 18 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) ∧ 𝑦 ∈ 𝑥) → (((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑇)) |
20 | 19 | ralimdva 3108 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇)) |
21 | | dfss3 3909 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑇 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇) |
22 | | tskssel 10513 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ⊆ 𝑇 ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇) |
23 | 22 | 3exp 1118 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ Tarski → (𝑥 ⊆ 𝑇 → (𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇))) |
24 | 21, 23 | syl5bir 242 |
. . . . . . . . . 10
⊢ (𝑇 ∈ Tarski →
(∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → (𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇))) |
25 | 24 | com23 86 |
. . . . . . . . 9
⊢ (𝑇 ∈ Tarski → (𝑥 ≺ 𝑇 → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇))) |
26 | 25 | imp 407 |
. . . . . . . 8
⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇)) |
27 | 26 | adantl 482 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇)) |
28 | 20, 27 | syld 47 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇)) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇)) |
29 | 28 | ex 413 |
. . . . 5
⊢ (𝑥 ∈ On → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
30 | 29 | com23 86 |
. . . 4
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇) → 𝑦 ∈ 𝑇) → ((𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇) → 𝑥 ∈ 𝑇))) |
31 | 4, 8, 30 | tfis3 7704 |
. . 3
⊢ (𝐴 ∈ On → ((𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇)) |
32 | 31 | 3impib 1115 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
33 | 32 | 3com12 1122 |
1
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |