![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsconcat00 | Structured version Visualization version GIF version |
Description: The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) |
Ref | Expression |
---|---|
tfsconcat.op | ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
Ref | Expression |
---|---|
tfsconcat00 | ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfsconcat.op | . . . 4 ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) | |
2 | 1 | tfsconcatrn 42395 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |
3 | 2 | eqeq1d 2733 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) = ∅ ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
4 | 1 | tfsconcatfn 42391 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
5 | fnrel 6651 | . . 3 ⊢ ((𝐴 + 𝐵) Fn (𝐶 +o 𝐷) → Rel (𝐴 + 𝐵)) | |
6 | relrn0 5968 | . . 3 ⊢ (Rel (𝐴 + 𝐵) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) |
8 | fnrel 6651 | . . . . . 6 ⊢ (𝐴 Fn 𝐶 → Rel 𝐴) | |
9 | relrn0 5968 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
11 | fnrel 6651 | . . . . . 6 ⊢ (𝐵 Fn 𝐷 → Rel 𝐵) | |
12 | relrn0 5968 | . . . . . 6 ⊢ (Rel 𝐵 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) |
14 | 10, 13 | bi2anan9 636 | . . . 4 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 = ∅ ∧ ran 𝐵 = ∅))) |
15 | un00 4442 | . . . 4 ⊢ ((ran 𝐴 = ∅ ∧ ran 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅) | |
16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
17 | 16 | adantr 480 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
18 | 3, 7, 17 | 3bitr4rd 312 | 1 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 ∖ cdif 3945 ∪ cun 3946 ∅c0 4322 {copab 5210 dom cdm 5676 ran crn 5677 Rel wrel 5681 Oncon0 6364 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 +o coa 8467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-oadd 8474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |