| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsconcat00 | Structured version Visualization version GIF version | ||
| Description: The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| tfsconcat.op | ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| Ref | Expression |
|---|---|
| tfsconcat00 | ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfsconcat.op | . . . 4 ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) | |
| 2 | 1 | tfsconcatrn 43338 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |
| 3 | 2 | eqeq1d 2732 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) = ∅ ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
| 4 | 1 | tfsconcatfn 43334 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
| 5 | fnrel 6623 | . . 3 ⊢ ((𝐴 + 𝐵) Fn (𝐶 +o 𝐷) → Rel (𝐴 + 𝐵)) | |
| 6 | relrn0 5939 | . . 3 ⊢ (Rel (𝐴 + 𝐵) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) |
| 8 | fnrel 6623 | . . . . . 6 ⊢ (𝐴 Fn 𝐶 → Rel 𝐴) | |
| 9 | relrn0 5939 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| 11 | fnrel 6623 | . . . . . 6 ⊢ (𝐵 Fn 𝐷 → Rel 𝐵) | |
| 12 | relrn0 5939 | . . . . . 6 ⊢ (Rel 𝐵 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) |
| 14 | 10, 13 | bi2anan9 638 | . . . 4 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 = ∅ ∧ ran 𝐵 = ∅))) |
| 15 | un00 4411 | . . . 4 ⊢ ((ran 𝐴 = ∅ ∧ ran 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅) | |
| 16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
| 17 | 16 | adantr 480 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
| 18 | 3, 7, 17 | 3bitr4rd 312 | 1 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∅c0 4299 {copab 5172 dom cdm 5641 ran crn 5642 Rel wrel 5646 Oncon0 6335 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 +o coa 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |