Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat00 Structured version   Visualization version   GIF version

Theorem tfsconcat00 43320
Description: The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat00 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat00
StepHypRef Expression
1 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatrn 43315 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
32eqeq1d 2731 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) = ∅ ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
41tfsconcatfn 43311 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷))
5 fnrel 6588 . . 3 ((𝐴 + 𝐵) Fn (𝐶 +o 𝐷) → Rel (𝐴 + 𝐵))
6 relrn0 5918 . . 3 (Rel (𝐴 + 𝐵) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅))
74, 5, 63syl 18 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅))
8 fnrel 6588 . . . . . 6 (𝐴 Fn 𝐶 → Rel 𝐴)
9 relrn0 5918 . . . . . 6 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
108, 9syl 17 . . . . 5 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
11 fnrel 6588 . . . . . 6 (𝐵 Fn 𝐷 → Rel 𝐵)
12 relrn0 5918 . . . . . 6 (Rel 𝐵 → (𝐵 = ∅ ↔ ran 𝐵 = ∅))
1311, 12syl 17 . . . . 5 (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ ran 𝐵 = ∅))
1410, 13bi2anan9 638 . . . 4 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 = ∅ ∧ ran 𝐵 = ∅)))
15 un00 4398 . . . 4 ((ran 𝐴 = ∅ ∧ ran 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)
1614, 15bitrdi 287 . . 3 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
1716adantr 480 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
183, 7, 173bitr4rd 312 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  c0 4286  {copab 5157  dom cdm 5623  ran crn 5624  Rel wrel 5628  Oncon0 6311   Fn wfn 6481  cfv 6486  (class class class)co 7353  cmpo 7355   +o coa 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator