Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcat00 Structured version   Visualization version   GIF version

Theorem tfsconcat00 43309
Description: The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcat00 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcat00
StepHypRef Expression
1 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatrn 43304 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
32eqeq1d 2742 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) = ∅ ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
41tfsconcatfn 43300 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷))
5 fnrel 6681 . . 3 ((𝐴 + 𝐵) Fn (𝐶 +o 𝐷) → Rel (𝐴 + 𝐵))
6 relrn0 5995 . . 3 (Rel (𝐴 + 𝐵) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅))
74, 5, 63syl 18 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅))
8 fnrel 6681 . . . . . 6 (𝐴 Fn 𝐶 → Rel 𝐴)
9 relrn0 5995 . . . . . 6 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
108, 9syl 17 . . . . 5 (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
11 fnrel 6681 . . . . . 6 (𝐵 Fn 𝐷 → Rel 𝐵)
12 relrn0 5995 . . . . . 6 (Rel 𝐵 → (𝐵 = ∅ ↔ ran 𝐵 = ∅))
1311, 12syl 17 . . . . 5 (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ ran 𝐵 = ∅))
1410, 13bi2anan9 637 . . . 4 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 = ∅ ∧ ran 𝐵 = ∅)))
15 un00 4468 . . . 4 ((ran 𝐴 = ∅ ∧ ran 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)
1614, 15bitrdi 287 . . 3 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
1716adantr 480 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅))
183, 7, 173bitr4rd 312 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  c0 4352  {copab 5228  dom cdm 5700  ran crn 5701  Rel wrel 5705  Oncon0 6395   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator