![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsconcat00 | Structured version Visualization version GIF version |
Description: The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) |
Ref | Expression |
---|---|
tfsconcat.op | ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
Ref | Expression |
---|---|
tfsconcat00 | ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfsconcat.op | . . . 4 ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) | |
2 | 1 | tfsconcatrn 42771 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |
3 | 2 | eqeq1d 2730 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) = ∅ ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
4 | 1 | tfsconcatfn 42767 | . . 3 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
5 | fnrel 6656 | . . 3 ⊢ ((𝐴 + 𝐵) Fn (𝐶 +o 𝐷) → Rel (𝐴 + 𝐵)) | |
6 | relrn0 5972 | . . 3 ⊢ (Rel (𝐴 + 𝐵) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = ∅ ↔ ran (𝐴 + 𝐵) = ∅)) |
8 | fnrel 6656 | . . . . . 6 ⊢ (𝐴 Fn 𝐶 → Rel 𝐴) | |
9 | relrn0 5972 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐶 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
11 | fnrel 6656 | . . . . . 6 ⊢ (𝐵 Fn 𝐷 → Rel 𝐵) | |
12 | relrn0 5972 | . . . . . 6 ⊢ (Rel 𝐵 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ ran 𝐵 = ∅)) |
14 | 10, 13 | bi2anan9 637 | . . . 4 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 = ∅ ∧ ran 𝐵 = ∅))) |
15 | un00 4443 | . . . 4 ⊢ ((ran 𝐴 = ∅ ∧ ran 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅) | |
16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
17 | 16 | adantr 480 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (ran 𝐴 ∪ ran 𝐵) = ∅)) |
18 | 3, 7, 17 | 3bitr4rd 312 | 1 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 Vcvv 3471 ∖ cdif 3944 ∪ cun 3945 ∅c0 4323 {copab 5210 dom cdm 5678 ran crn 5679 Rel wrel 5683 Oncon0 6369 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 +o coa 8483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-oadd 8490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |