MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnext Structured version   Visualization version   GIF version

Theorem wwlksnext 29913
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wwlksnext.v 𝑉 = (Vtx‘𝐺)
wwlksnext.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnext ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))

Proof of Theorem wwlksnext
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknbp 29862 . . 3 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉))
3 wwlksnext.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
41, 3wwlknp 29863 . . . . . . . . . 10 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
5 simp1 1137 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → 𝑇 ∈ Word 𝑉)
6 simprl 771 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑆𝑉)
7 cats1un 14759 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉𝑆𝑉) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
85, 6, 7syl2an 596 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
9 opex 5469 . . . . . . . . . . . . . . . . . . 19 ⟨(♯‘𝑇), 𝑆⟩ ∈ V
109snnz 4776 . . . . . . . . . . . . . . . . . 18 {⟨(♯‘𝑇), 𝑆⟩} ≠ ∅
1110neii 2942 . . . . . . . . . . . . . . . . 17 ¬ {⟨(♯‘𝑇), 𝑆⟩} = ∅
1211intnan 486 . . . . . . . . . . . . . . . 16 ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅)
13 df-ne 2941 . . . . . . . . . . . . . . . . 17 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
14 un00 4445 . . . . . . . . . . . . . . . . 17 ((𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅) ↔ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
1513, 14xchbinxr 335 . . . . . . . . . . . . . . . 16 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅))
1612, 15mpbir 231 . . . . . . . . . . . . . . 15 (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅
1716a1i 11 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅)
188, 17eqnetrd 3008 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ≠ ∅)
19 s1cl 14640 . . . . . . . . . . . . . . 15 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
2019ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
21 ccatcl 14612 . . . . . . . . . . . . . 14 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
225, 20, 21syl2an 596 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
23 simplrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑇 ∈ Word 𝑉)
24 fzossfzop1 13782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
2524ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
2625sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
27 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑇) = (𝑁 + 1) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
2827eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑇) = (𝑁 + 1) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
2928adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3029ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3126, 30mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑇)))
32 ccats1val1 14664 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
3323, 31, 32syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
34 fzonn0p1p1 13783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
3627adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
3736ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
3835, 37eleqtrrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑇)))
39 ccats1val1 14664 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4023, 38, 39syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4133, 40preq12d 4741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})
4241exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑆𝑉) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})))
4342adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})))
4443impcom 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))}))
4544imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {(𝑇𝑖), (𝑇‘(𝑖 + 1))})
4645eleq1d 2826 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
4746ralbidva 3176 . . . . . . . . . . . . . . . . . . . 20 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
4847exbiri 811 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
4948com23 86 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
50493impia 1118 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5150imp 406 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
52 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑇) = (𝑁 + 1) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
54 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
55 1cnd 11256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5654, 55pncand 11621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
5853, 57sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((♯‘𝑇) − 1) = 𝑁)
5958fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑇‘((♯‘𝑇) − 1)) = (𝑇𝑁))
60 lsw 14602 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑇 ∈ Word 𝑉 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
6160ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
62 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑇 ∈ Word 𝑉)
63 fzonn0p1 13781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6463ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
6527eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑇) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
6665ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
6764, 66mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(♯‘𝑇)))
68 ccats1val1 14664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑇 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
6962, 67, 68syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
7059, 61, 693eqtr4d 2787 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
71 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆𝑉)
72 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (♯‘𝑇) = (𝑁 + 1))
7372eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 + 1) = (♯‘𝑇))
74 ccats1val2 14665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)) = 𝑆)
7574eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → 𝑆 = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
7662, 71, 73, 75syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆 = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
7770, 76preq12d 4741 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {(lastS‘𝑇), 𝑆} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
7877eleq1d 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
7978biimpcd 249 . . . . . . . . . . . . . . . . . . . . . 22 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8079exp4c 432 . . . . . . . . . . . . . . . . . . . . 21 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))))
8180impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)))
8281impcom 407 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8382impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)
84833adantl3 1169 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)
85 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
86 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
8785, 86preq12d 4741 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑁 → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
8887eleq1d 2826 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑁 → ({((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8988ralsng 4675 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9089ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9184, 90mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
92 ralunb 4197 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
9351, 91, 92sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
94 elnn0uz 12923 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
95 eluzfz2 13572 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
9694, 95sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
97 fzelp1 13616 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1)))
98 fzosplit 13732 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (0...(𝑁 + 1)) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
100 nn0z 12638 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
101 fzosn 13775 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (𝑁..^(𝑁 + 1)) = {𝑁})
102100, 101syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁..^(𝑁 + 1)) = {𝑁})
103102uneq2d 4168 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))) = ((0..^𝑁) ∪ {𝑁}))
10499, 103eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
105104ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
10693, 105raleqtrrdv 3330 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
107 ccatlen 14613 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1085, 20, 107syl2an 596 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
109108oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1))
110 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘𝑇) = (𝑁 + 1))
111 s1len 14644 . . . . . . . . . . . . . . . . . . 19 (♯‘⟨“𝑆”⟩) = 1
112111a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘⟨“𝑆”⟩) = 1)
113110, 112oveq12d 7449 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
114113oveq1d 7446 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1) = (((𝑁 + 1) + 1) − 1))
115 peano2nn0 12566 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
116115nn0cnd 12589 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
117116, 55pncand 11621 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
118117ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
119109, 114, 1183eqtrd 2781 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (𝑁 + 1))
120119oveq2d 7447 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)) = (0..^(𝑁 + 1)))
121106, 120raleqtrrdv 3330 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
12218, 22, 1213jca 1129 . . . . . . . . . . . 12 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
123108, 113eqtrd 2777 . . . . . . . . . . . 12 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
124122, 123jca 511 . . . . . . . . . . 11 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
125124ex 412 . . . . . . . . . 10 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1264, 125syl 17 . . . . . . . . 9 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
127126expd 415 . . . . . . . 8 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))))
128127impcom 407 . . . . . . 7 ((𝑁 ∈ ℕ0𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
129128adantll 714 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
130 iswwlksn 29858 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
131115, 130syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
132131adantl 481 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1331, 3iswwlks 29856 . . . . . . . . 9 ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
134133anbi1i 624 . . . . . . . 8 (((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
135132, 134bitrdi 287 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
136135adantr 480 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
137129, 136sylibrd 259 . . . . 5 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
138137ex 412 . . . 4 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1391383adant3 1133 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1402, 139mpcom 38 . 2 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
1411403impib 1117 1 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cun 3949  wss 3951  c0 4333  {csn 4626  {cpr 4628  cop 4632  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  lastSclsw 14600   ++ cconcat 14608  ⟨“cs1 14633  Vtxcvtx 29013  Edgcedg 29064  WWalkscwwlks 29845   WWalksN cwwlksn 29846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-wwlks 29850  df-wwlksn 29851
This theorem is referenced by:  wwlksnextbi  29914  wwlksnextsurj  29920
  Copyright terms: Public domain W3C validator