MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnext Structured version   Visualization version   GIF version

Theorem wwlksnext 27096
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wwlksnext.v 𝑉 = (Vtx‘𝐺)
wwlksnext.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnext ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))

Proof of Theorem wwlksnext
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknbp 27027 . . 3 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉))
3 wwlksnext.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
41, 3wwlknp 27028 . . . . . . . . . . 11 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸))
5 simp1 1166 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → 𝑇 ∈ Word 𝑉)
6 simprl 787 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑆𝑉)
7 cats1un 13719 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Word 𝑉𝑆𝑉) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
85, 6, 7syl2an 589 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) = (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}))
9 opex 5088 . . . . . . . . . . . . . . . . . . . 20 ⟨(♯‘𝑇), 𝑆⟩ ∈ V
109snnz 4463 . . . . . . . . . . . . . . . . . . 19 {⟨(♯‘𝑇), 𝑆⟩} ≠ ∅
1110neii 2939 . . . . . . . . . . . . . . . . . 18 ¬ {⟨(♯‘𝑇), 𝑆⟩} = ∅
1211intnan 480 . . . . . . . . . . . . . . . . 17 ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅)
13 df-ne 2938 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
14 un00 4173 . . . . . . . . . . . . . . . . . 18 ((𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅) ↔ (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) = ∅)
1513, 14xchbinxr 326 . . . . . . . . . . . . . . . . 17 ((𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅ ↔ ¬ (𝑇 = ∅ ∧ {⟨(♯‘𝑇), 𝑆⟩} = ∅))
1612, 15mpbir 222 . . . . . . . . . . . . . . . 16 (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅
1716a1i 11 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ∪ {⟨(♯‘𝑇), 𝑆⟩}) ≠ ∅)
188, 17eqnetrd 3004 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ≠ ∅)
19 s1cl 13573 . . . . . . . . . . . . . . . 16 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
2019ad2antrl 719 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
21 ccatcl 13545 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
225, 20, 21syl2an 589 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉)
23 simplrl 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑇 ∈ Word 𝑉)
24 simpll 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆𝑉)
2524adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆𝑉)
26 fzossfzop1 12754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
2726sseld 3760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ0 → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
2827ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1))))
2928imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
30 oveq2 6850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝑇) = (𝑁 + 1) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
3130eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑇) = (𝑁 + 1) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3231adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3332ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
3429, 33mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑇)))
35 ccats1val1 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑇 ∈ Word 𝑉𝑆𝑉𝑖 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
3623, 25, 34, 35syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = (𝑇𝑖))
3736eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑇𝑖) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖))
38 fzonn0p1p1 12755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
3938adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4030adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
4140ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1)))
4239, 41eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑇)))
43 ccats1val1 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4423, 25, 42, 43syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1)))
4544eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑇‘(𝑖 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)))
4637, 45preq12d 4431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))})
4746exp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑆𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))}))))
4847adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))}))))
4948impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))})))
5049impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑖 ∈ (0..^𝑁) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))}))
5150imp 395 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → {(𝑇𝑖), (𝑇‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))})
5251eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → ({(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5352ralbidva 3132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5453biimpd 220 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5554ex 401 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
5655com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
57563impia 1145 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5857imp 395 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
59 oveq1 6849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑇) = (𝑁 + 1) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
6059ad2antll 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((♯‘𝑇) − 1) = ((𝑁 + 1) − 1))
61 nn0cn 11549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
62 ax-1cn 10247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 ∈ ℂ
63 pncan 10541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
6461, 62, 63sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6564ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
6660, 65eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((♯‘𝑇) − 1) = 𝑁)
6766fveq2d 6379 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑇‘((♯‘𝑇) − 1)) = (𝑇𝑁))
68 lsw 13535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑇 ∈ Word 𝑉 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
6968ad2antrl 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1)))
70 simprl 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑇 ∈ Word 𝑉)
71 fzonn0p1 12753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
7271ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
7330eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑇) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
7473ad2antll 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
7572, 74mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(♯‘𝑇)))
76 ccats1val1 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑇 ∈ Word 𝑉𝑆𝑉𝑁 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
7770, 24, 75, 76syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁) = (𝑇𝑁))
7867, 69, 773eqtr4d 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
79 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (♯‘𝑇) = (𝑁 + 1))
8079eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑁 + 1) = (♯‘𝑇))
8180adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 + 1) = (♯‘𝑇))
82 ccats1val2 13601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑇 ∈ Word 𝑉𝑆𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)) = 𝑆)
8370, 24, 81, 82syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)) = 𝑆)
8483eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆 = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
8578, 84preq12d 4431 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {(lastS‘𝑇), 𝑆} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
8685eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8786biimpcd 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (((𝑆𝑉𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
8887exp4c 423 . . . . . . . . . . . . . . . . . . . . . . 23 ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))))
8988impcom 396 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)))
9089impcom 396 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9190com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
92913adant3 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9392imp 395 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸)
94 fveq2 6375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘𝑖) = ((𝑇 ++ ⟨“𝑆”⟩)‘𝑁))
95 fvoveq1 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑁 → ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1)))
9694, 95preq12d 4431 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑁 → {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} = {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))})
9796eleq1d 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑁 → ({((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9897ralsng 4375 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
9998ad2antrl 719 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ ⟨“𝑆”⟩)‘𝑁), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑁 + 1))} ∈ 𝐸))
10093, 99mpbird 248 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
101 ralunb 3956 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
10258, 100, 101sylanbrc 578 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
103 elnn0uz 11925 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
104 eluzfz2 12556 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
105103, 104sylbi 208 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
106 fzelp1 12600 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1)))
107 fzosplit 12709 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (0...(𝑁 + 1)) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
108105, 106, 1073syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))))
109 nn0z 11647 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
110 fzosn 12747 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑁..^(𝑁 + 1)) = {𝑁})
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁..^(𝑁 + 1)) = {𝑁})
112111uneq2d 3929 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1))) = ((0..^𝑁) ∪ {𝑁}))
113108, 112eqtrd 2799 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
114113ad2antrl 719 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
115114raleqdv 3292 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
116102, 115mpbird 248 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
117 ccatlen 13546 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1185, 20, 117syl2an 589 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
119118oveq1d 6857 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1))
120 simpl2 1244 . . . . . . . . . . . . . . . . . . . 20 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘𝑇) = (𝑁 + 1))
121 s1len 13577 . . . . . . . . . . . . . . . . . . . . 21 (♯‘⟨“𝑆”⟩) = 1
122121a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘⟨“𝑆”⟩) = 1)
123120, 122oveq12d 6860 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
124123oveq1d 6857 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) − 1) = (((𝑁 + 1) + 1) − 1))
125 peano2nn0 11580 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
126125nn0cnd 11600 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
127 pncan 10541 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
128126, 62, 127sylancl 580 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
129128ad2antrl 719 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
130119, 124, 1293eqtrd 2803 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1) = (𝑁 + 1))
131130oveq2d 6858 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)) = (0..^(𝑁 + 1)))
132131raleqdv 3292 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
133116, 132mpbird 248 . . . . . . . . . . . . . 14 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸)
13418, 22, 1333jca 1158 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
135118, 123eqtrd 2799 . . . . . . . . . . . . 13 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))
136134, 135jca 507 . . . . . . . . . . . 12 (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
137136ex 401 . . . . . . . . . . 11 ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1384, 137syl 17 . . . . . . . . . 10 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ (𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
139138expd 404 . . . . . . . . 9 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))))
140139com12 32 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))))
141140adantl 473 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))))
142141imp 395 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
143 iswwlksn 27023 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
144125, 143syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
145144adantl 473 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
1461, 3iswwlks 27021 . . . . . . . . 9 ((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸))
147146anbi1i 617 . . . . . . . 8 (((𝑇 ++ ⟨“𝑆”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
148145, 147syl6bb 278 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
149148adantr 472 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ ⟨“𝑆”⟩) ≠ ∅ ∧ (𝑇 ++ ⟨“𝑆”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ ⟨“𝑆”⟩)) − 1)){((𝑇 ++ ⟨“𝑆”⟩)‘𝑖), ((𝑇 ++ ⟨“𝑆”⟩)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1))))
150142, 149sylibrd 250 . . . . 5 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
151150ex 401 . . . 4 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1521513adant3 1162 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑇 ∈ Word 𝑉) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))))
1532, 152mpcom 38 . 2 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
1541533impib 1144 1 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  cun 3730  c0 4079  {csn 4334  {cpr 4336  cop 4340  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486  lastSclsw 13533   ++ cconcat 13541  ⟨“cs1 13566  Vtxcvtx 26165  Edgcedg 26216  WWalkscwwlks 27010   WWalksN cwwlksn 27011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-s1 13567  df-wwlks 27015  df-wwlksn 27016
This theorem is referenced by:  wwlksnextbi  27097  wwlksnextbiOLD  27098  wwlksnextsurj  27106  wwlksnextsurOLD  27111
  Copyright terms: Public domain W3C validator