Step | Hyp | Ref
| Expression |
1 | | wwlksnext.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | wwlknbp 27727 |
. . 3
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑇 ∈ Word 𝑉)) |
3 | | wwlksnext.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
4 | 1, 3 | wwlknp 27728 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸)) |
5 | | simp1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → 𝑇 ∈ Word 𝑉) |
6 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑆 ∈ 𝑉) |
7 | | cats1un 14130 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑇 ++ 〈“𝑆”〉) = (𝑇 ∪ {〈(♯‘𝑇), 𝑆〉})) |
8 | 5, 6, 7 | syl2an 598 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) = (𝑇 ∪ {〈(♯‘𝑇), 𝑆〉})) |
9 | | opex 5324 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈(♯‘𝑇), 𝑆〉 ∈ V |
10 | 9 | snnz 4669 |
. . . . . . . . . . . . . . . . . 18
⊢
{〈(♯‘𝑇), 𝑆〉} ≠ ∅ |
11 | 10 | neii 2953 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
{〈(♯‘𝑇),
𝑆〉} =
∅ |
12 | 11 | intnan 490 |
. . . . . . . . . . . . . . . 16
⊢ ¬
(𝑇 = ∅ ∧
{〈(♯‘𝑇),
𝑆〉} =
∅) |
13 | | df-ne 2952 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∪
{〈(♯‘𝑇),
𝑆〉}) ≠ ∅
↔ ¬ (𝑇 ∪
{〈(♯‘𝑇),
𝑆〉}) =
∅) |
14 | | un00 4339 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇 = ∅ ∧
{〈(♯‘𝑇),
𝑆〉} = ∅) ↔
(𝑇 ∪
{〈(♯‘𝑇),
𝑆〉}) =
∅) |
15 | 13, 14 | xchbinxr 338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∪
{〈(♯‘𝑇),
𝑆〉}) ≠ ∅
↔ ¬ (𝑇 = ∅
∧ {〈(♯‘𝑇), 𝑆〉} = ∅)) |
16 | 12, 15 | mpbir 234 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∪
{〈(♯‘𝑇),
𝑆〉}) ≠
∅ |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ∪ {〈(♯‘𝑇), 𝑆〉}) ≠ ∅) |
18 | 8, 17 | eqnetrd 3018 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) ≠
∅) |
19 | | s1cl 14003 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) |
20 | 19 | ad2antrl 727 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 〈“𝑆”〉 ∈ Word 𝑉) |
21 | | ccatcl 13973 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉) |
22 | 5, 20, 21 | syl2an 598 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉) |
23 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑇 ∈ Word 𝑉) |
24 | | fzossfzop1 13164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈ ℕ0
→ (0..^𝑁) ⊆
(0..^(𝑁 +
1))) |
25 | 24 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (0..^𝑁) ⊆ (0..^(𝑁 + 1))) |
26 | 25 | sselda 3892 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1))) |
27 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((♯‘𝑇) =
(𝑁 + 1) →
(0..^(♯‘𝑇)) =
(0..^(𝑁 +
1))) |
28 | 27 | eleq2d 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((♯‘𝑇) =
(𝑁 + 1) → (𝑖 ∈
(0..^(♯‘𝑇))
↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
29 | 28 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
30 | 29 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑇)) ↔ 𝑖 ∈ (0..^(𝑁 + 1)))) |
31 | 26, 30 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑇))) |
32 | | ccats1val1 14028 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑖 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = (𝑇‘𝑖)) |
33 | 23, 31, 32 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = (𝑇‘𝑖)) |
34 | | fzonn0p1p1 13165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1))) |
35 | 34 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1))) |
36 | 27 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1))) |
37 | 36 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (0..^(♯‘𝑇)) = (0..^(𝑁 + 1))) |
38 | 35, 37 | eleqtrrd 2855 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑇))) |
39 | | ccats1val1 14028 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑇 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1))) |
40 | 23, 38, 39 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = (𝑇‘(𝑖 + 1))) |
41 | 33, 40 | preq12d 4634 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))}) |
42 | 41 | exp31 423 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ0
∧ 𝑆 ∈ 𝑉) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))}))) |
43 | 42 | adantrr 716 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))}))) |
44 | 43 | impcom 411 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (𝑖 ∈ (0..^𝑁) → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))})) |
45 | 44 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))}) |
46 | 45 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸)) |
47 | 46 | ralbidva 3125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸)) |
48 | 47 | exbiri 810 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸))) |
49 | 48 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → (∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸 → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸))) |
50 | 49 | 3impia 1114 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
51 | 50 | imp 410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
52 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((♯‘𝑇) =
(𝑁 + 1) →
((♯‘𝑇) −
1) = ((𝑁 + 1) −
1)) |
53 | 52 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → ((♯‘𝑇) − 1) = ((𝑁 + 1) −
1)) |
54 | | nn0cn 11944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
55 | | 1cnd 10674 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
56 | 54, 55 | pncand 11036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
57 | 56 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁) |
58 | 53, 57 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((♯‘𝑇) − 1) = 𝑁) |
59 | 58 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑇‘((♯‘𝑇) − 1)) = (𝑇‘𝑁)) |
60 | | lsw 13963 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑇 ∈ Word 𝑉 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
61 | 60 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
62 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑇 ∈ Word 𝑉) |
63 | | fzonn0p1 13163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
64 | 63 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1))) |
65 | 27 | eleq2d 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((♯‘𝑇) =
(𝑁 + 1) → (𝑁 ∈
(0..^(♯‘𝑇))
↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
66 | 65 | ad2antll 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 ∈ (0..^(♯‘𝑇)) ↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
67 | 64, 66 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑁 ∈ (0..^(♯‘𝑇))) |
68 | | ccats1val1 14028 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑁) = (𝑇‘𝑁)) |
69 | 62, 67, 68 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ((𝑇 ++ 〈“𝑆”〉)‘𝑁) = (𝑇‘𝑁)) |
70 | 59, 61, 69 | 3eqtr4d 2803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (lastS‘𝑇) = ((𝑇 ++ 〈“𝑆”〉)‘𝑁)) |
71 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆 ∈ 𝑉) |
72 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (♯‘𝑇) = (𝑁 + 1)) |
73 | 72 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → (𝑁 + 1) = (♯‘𝑇)) |
74 | | ccats1val2 14030 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1)) = 𝑆) |
75 | 74 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑇 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ (𝑁 + 1) = (♯‘𝑇)) → 𝑆 = ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))) |
76 | 62, 71, 73, 75 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → 𝑆 = ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))) |
77 | 70, 76 | preq12d 4634 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {(lastS‘𝑇), 𝑆} = {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))}) |
78 | 77 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
79 | 78 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
({(lastS‘𝑇),
𝑆} ∈ 𝐸 → (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1))) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
80 | 79 | exp4c 436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({(lastS‘𝑇),
𝑆} ∈ 𝐸 → (𝑆 ∈ 𝑉 → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)))) |
81 | 80 | impcom 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑁 ∈ ℕ0 → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸))) |
82 | 81 | impcom 411 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
83 | 82 | impcom 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1)) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸) |
84 | 83 | 3adantl3 1165 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸) |
85 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑁 → ((𝑇 ++ 〈“𝑆”〉)‘𝑖) = ((𝑇 ++ 〈“𝑆”〉)‘𝑁)) |
86 | | fvoveq1 7173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑁 → ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1)) = ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))) |
87 | 85, 86 | preq12d 4634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑁 → {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} = {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))}) |
88 | 87 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑁 → ({((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
89 | 88 | ralsng 4570 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (∀𝑖 ∈
{𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
90 | 89 | ad2antrl 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑇 ++ 〈“𝑆”〉)‘𝑁), ((𝑇 ++ 〈“𝑆”〉)‘(𝑁 + 1))} ∈ 𝐸)) |
91 | 84, 90 | mpbird 260 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
92 | | ralunb 4096 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
93 | 51, 91, 92 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
94 | | elnn0uz 12323 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
95 | | eluzfz2 12964 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
96 | 94, 95 | sylbi 220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0...𝑁)) |
97 | | fzelp1 13008 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1))) |
98 | | fzosplit 13119 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (0...(𝑁 + 1)) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ (𝑁..^(𝑁 + 1)))) |
99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (0..^(𝑁 + 1)) =
((0..^𝑁) ∪ (𝑁..^(𝑁 + 1)))) |
100 | | nn0z 12044 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
101 | | fzosn 13157 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℤ → (𝑁..^(𝑁 + 1)) = {𝑁}) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁..^(𝑁 + 1)) = {𝑁}) |
103 | 102 | uneq2d 4068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((0..^𝑁) ∪
(𝑁..^(𝑁 + 1))) = ((0..^𝑁) ∪ {𝑁})) |
104 | 99, 103 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ (0..^(𝑁 + 1)) =
((0..^𝑁) ∪ {𝑁})) |
105 | 104 | ad2antrl 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
106 | 105 | raleqdv 3329 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
107 | 93, 106 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
108 | | ccatlen 13974 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉) → (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((♯‘𝑇) +
(♯‘〈“𝑆”〉))) |
109 | 5, 20, 108 | syl2an 598 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((♯‘𝑇) +
(♯‘〈“𝑆”〉))) |
110 | 109 | oveq1d 7165 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) − 1) =
(((♯‘𝑇) +
(♯‘〈“𝑆”〉)) − 1)) |
111 | | simpl2 1189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘𝑇) = (𝑁 + 1)) |
112 | | s1len 14007 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(♯‘〈“𝑆”〉) = 1 |
113 | 112 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘〈“𝑆”〉) =
1) |
114 | 111, 113 | oveq12d 7168 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘𝑇) + (♯‘〈“𝑆”〉)) = ((𝑁 + 1) + 1)) |
115 | 114 | oveq1d 7165 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((♯‘𝑇) +
(♯‘〈“𝑆”〉)) − 1) = (((𝑁 + 1) + 1) −
1)) |
116 | | peano2nn0 11974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
117 | 116 | nn0cnd 11996 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
118 | 117, 55 | pncand 11036 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 1)
− 1) = (𝑁 +
1)) |
119 | 118 | ad2antrl 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1)) |
120 | 110, 115,
119 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((♯‘(𝑇 ++ 〈“𝑆”〉)) − 1) =
(𝑁 + 1)) |
121 | 120 | oveq2d 7166 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (0..^((♯‘(𝑇 ++ 〈“𝑆”〉)) − 1)) =
(0..^(𝑁 +
1))) |
122 | 121 | raleqdv 3329 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (∀𝑖 ∈ (0..^((♯‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
123 | 107, 122 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) |
124 | 18, 22, 123 | 3jca 1125 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → ((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
125 | 109, 114 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)) |
126 | 124, 125 | jca 515 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) ∧ (𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸))) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
127 | 126 | ex 416 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ Word 𝑉 ∧ (♯‘𝑇) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑇‘𝑖), (𝑇‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
128 | 4, 127 | syl 17 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
129 | 128 | expd 419 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))))) |
130 | 129 | impcom 411 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
131 | 130 | adantll 713 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
132 | | iswwlksn 27723 |
. . . . . . . . . 10
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
133 | 116, 132 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
134 | 133 | adantl 485 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ ((𝑇 ++ 〈“𝑆”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
135 | 1, 3 | iswwlks 27721 |
. . . . . . . . 9
⊢ ((𝑇 ++ 〈“𝑆”〉) ∈
(WWalks‘𝐺) ↔
((𝑇 ++ 〈“𝑆”〉) ≠ ∅
∧ (𝑇 ++
〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑇 ++ 〈“𝑆”〉)) −
1)){((𝑇 ++
〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸)) |
136 | 135 | anbi1i 626 |
. . . . . . . 8
⊢ (((𝑇 ++ 〈“𝑆”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑇 ++
〈“𝑆”〉)) = ((𝑁 + 1) + 1)) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1))) |
137 | 134, 136 | bitrdi 290 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ ((𝑇 ++
〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
138 | 137 | adantr 484 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (((𝑇 ++ 〈“𝑆”〉) ≠ ∅ ∧ (𝑇 ++ 〈“𝑆”〉) ∈ Word 𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑇 ++
〈“𝑆”〉)) − 1)){((𝑇 ++ 〈“𝑆”〉)‘𝑖), ((𝑇 ++ 〈“𝑆”〉)‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘(𝑇 ++ 〈“𝑆”〉)) = ((𝑁 + 1) + 1)))) |
139 | 131, 138 | sylibrd 262 |
. . . . 5
⊢ (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
∧ 𝑇 ∈ (𝑁 WWalksN 𝐺)) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) |
140 | 139 | ex 416 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)
→ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
141 | 140 | 3adant3 1129 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑇 ∈ Word 𝑉) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
142 | 2, 141 | mpcom 38 |
. 2
⊢ (𝑇 ∈ (𝑁 WWalksN 𝐺) → ((𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) |
143 | 142 | 3impib 1113 |
1
⊢ ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆 ∈ 𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ 〈“𝑆”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)) |