Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncov Structured version   Visualization version   GIF version

Theorem uncov 35758
Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncov ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))

Proof of Theorem uncov
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5075 . . . . 5 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹)
2 df-unc 8084 . . . . . 6 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
32eleq2i 2830 . . . . 5 (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
41, 3bitri 274 . . . 4 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
5 vex 3436 . . . . 5 𝑤 ∈ V
6 simp2 1136 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑦 = 𝐵)
7 fveq2 6774 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
873ad2ant1 1132 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝐹𝑥) = (𝐹𝐴))
9 simp3 1137 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑧 = 𝑤)
106, 8, 9breq123d 5088 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝑦(𝐹𝑥)𝑧𝐵(𝐹𝐴)𝑤))
1110eloprabga 7382 . . . . 5 ((𝐴𝑉𝐵𝑊𝑤 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
125, 11mp3an3 1449 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
134, 12syl5bb 283 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤𝐵(𝐹𝐴)𝑤))
1413iotabidv 6417 . 2 ((𝐴𝑉𝐵𝑊) → (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤) = (℩𝑤𝐵(𝐹𝐴)𝑤))
15 df-ov 7278 . . 3 (𝐴uncurry 𝐹𝐵) = (uncurry 𝐹‘⟨𝐴, 𝐵⟩)
16 df-fv 6441 . . 3 (uncurry 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
1715, 16eqtri 2766 . 2 (𝐴uncurry 𝐹𝐵) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
18 df-fv 6441 . 2 ((𝐹𝐴)‘𝐵) = (℩𝑤𝐵(𝐹𝐴)𝑤)
1914, 17, 183eqtr4g 2803 1 ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   class class class wbr 5074  cio 6389  cfv 6433  (class class class)co 7275  {coprab 7276  uncurry cunc 8082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-oprab 7279  df-unc 8084
This theorem is referenced by:  curunc  35759  matunitlindflem2  35774
  Copyright terms: Public domain W3C validator