Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncov Structured version   Visualization version   GIF version

Theorem uncov 35037
Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncov ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))

Proof of Theorem uncov
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5034 . . . . 5 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹)
2 df-unc 7921 . . . . . 6 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
32eleq2i 2884 . . . . 5 (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
41, 3bitri 278 . . . 4 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
5 vex 3447 . . . . 5 𝑤 ∈ V
6 simp2 1134 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑦 = 𝐵)
7 fveq2 6649 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
873ad2ant1 1130 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝐹𝑥) = (𝐹𝐴))
9 simp3 1135 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑧 = 𝑤)
106, 8, 9breq123d 5047 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝑦(𝐹𝑥)𝑧𝐵(𝐹𝐴)𝑤))
1110eloprabga 7244 . . . . 5 ((𝐴𝑉𝐵𝑊𝑤 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
125, 11mp3an3 1447 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
134, 12syl5bb 286 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤𝐵(𝐹𝐴)𝑤))
1413iotabidv 6312 . 2 ((𝐴𝑉𝐵𝑊) → (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤) = (℩𝑤𝐵(𝐹𝐴)𝑤))
15 df-ov 7142 . . 3 (𝐴uncurry 𝐹𝐵) = (uncurry 𝐹‘⟨𝐴, 𝐵⟩)
16 df-fv 6336 . . 3 (uncurry 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
1715, 16eqtri 2824 . 2 (𝐴uncurry 𝐹𝐵) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
18 df-fv 6336 . 2 ((𝐹𝐴)‘𝐵) = (℩𝑤𝐵(𝐹𝐴)𝑤)
1914, 17, 183eqtr4g 2861 1 ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  Vcvv 3444  cop 4534   class class class wbr 5033  cio 6285  cfv 6328  (class class class)co 7139  {coprab 7140  uncurry cunc 7919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-oprab 7143  df-unc 7921
This theorem is referenced by:  curunc  35038  matunitlindflem2  35053
  Copyright terms: Public domain W3C validator