Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncov Structured version   Visualization version   GIF version

Theorem uncov 37630
Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncov ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))

Proof of Theorem uncov
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5125 . . . . 5 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹)
2 df-unc 8272 . . . . . 6 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
32eleq2i 2827 . . . . 5 (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ uncurry 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
41, 3bitri 275 . . . 4 (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧})
5 vex 3468 . . . . 5 𝑤 ∈ V
6 simp2 1137 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑦 = 𝐵)
7 fveq2 6881 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
873ad2ant1 1133 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝐹𝑥) = (𝐹𝐴))
9 simp3 1138 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → 𝑧 = 𝑤)
106, 8, 9breq123d 5138 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝑤) → (𝑦(𝐹𝑥)𝑧𝐵(𝐹𝐴)𝑤))
1110eloprabga 7521 . . . . 5 ((𝐴𝑉𝐵𝑊𝑤 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
125, 11mp3an3 1452 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝑤⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} ↔ 𝐵(𝐹𝐴)𝑤))
134, 12bitrid 283 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩uncurry 𝐹𝑤𝐵(𝐹𝐴)𝑤))
1413iotabidv 6520 . 2 ((𝐴𝑉𝐵𝑊) → (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤) = (℩𝑤𝐵(𝐹𝐴)𝑤))
15 df-ov 7413 . . 3 (𝐴uncurry 𝐹𝐵) = (uncurry 𝐹‘⟨𝐴, 𝐵⟩)
16 df-fv 6544 . . 3 (uncurry 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
1715, 16eqtri 2759 . 2 (𝐴uncurry 𝐹𝐵) = (℩𝑤𝐴, 𝐵⟩uncurry 𝐹𝑤)
18 df-fv 6544 . 2 ((𝐹𝐴)‘𝐵) = (℩𝑤𝐵(𝐹𝐴)𝑤)
1914, 17, 183eqtr4g 2796 1 ((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612   class class class wbr 5124  cio 6487  cfv 6536  (class class class)co 7410  {coprab 7411  uncurry cunc 8270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-oprab 7414  df-unc 8272
This theorem is referenced by:  curunc  37631  matunitlindflem2  37646
  Copyright terms: Public domain W3C validator