Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sshepw Structured version   Visualization version   GIF version

Theorem sshepw 43753
Description: The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
sshepw ( [] ∪ I ) hereditary 𝒫 𝐴

Proof of Theorem sshepw
StepHypRef Expression
1 psshepw 43752 . 2 [] hereditary 𝒫 𝐴
2 idhe 43751 . 2 I hereditary 𝒫 𝐴
3 unhe1 43749 . 2 (( [] hereditary 𝒫 𝐴 ∧ I hereditary 𝒫 𝐴) → ( [] ∪ I ) hereditary 𝒫 𝐴)
41, 2, 3mp2an 691 1 ( [] ∪ I ) hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3974  𝒫 cpw 4622   I cid 5592  ccnv 5699   [] crpss 7759   hereditary whe 43736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-rpss 7760  df-he 43737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator