| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sshepw | Structured version Visualization version GIF version | ||
| Description: The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
| Ref | Expression |
|---|---|
| sshepw | ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psshepw 43827 | . 2 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 | |
| 2 | idhe 43826 | . 2 ⊢ I hereditary 𝒫 𝐴 | |
| 3 | unhe1 43824 | . 2 ⊢ ((◡ [⊊] hereditary 𝒫 𝐴 ∧ I hereditary 𝒫 𝐴) → (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3900 𝒫 cpw 4550 I cid 5510 ◡ccnv 5615 [⊊] crpss 7655 hereditary whe 43811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-rpss 7656 df-he 43812 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |