![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sshepw | Structured version Visualization version GIF version |
Description: The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
sshepw | ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psshepw 43794 | . 2 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 | |
2 | idhe 43793 | . 2 ⊢ I hereditary 𝒫 𝐴 | |
3 | unhe1 43791 | . 2 ⊢ ((◡ [⊊] hereditary 𝒫 𝐴 ∧ I hereditary 𝒫 𝐴) → (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3964 𝒫 cpw 4608 I cid 5586 ◡ccnv 5692 [⊊] crpss 7748 hereditary whe 43778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-rpss 7749 df-he 43779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |