Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sshepw | Structured version Visualization version GIF version |
Description: The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
sshepw | ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psshepw 41349 | . 2 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 | |
2 | idhe 41348 | . 2 ⊢ I hereditary 𝒫 𝐴 | |
3 | unhe1 41346 | . 2 ⊢ ((◡ [⊊] hereditary 𝒫 𝐴 ∧ I hereditary 𝒫 𝐴) → (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3889 𝒫 cpw 4538 I cid 5487 ◡ccnv 5587 [⊊] crpss 7566 hereditary whe 41333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-rpss 7567 df-he 41334 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |