Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sshepw Structured version   Visualization version   GIF version

Theorem sshepw 42842
Description: The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
sshepw ( [] ∪ I ) hereditary 𝒫 𝐴

Proof of Theorem sshepw
StepHypRef Expression
1 psshepw 42841 . 2 [] hereditary 𝒫 𝐴
2 idhe 42840 . 2 I hereditary 𝒫 𝐴
3 unhe1 42838 . 2 (( [] hereditary 𝒫 𝐴 ∧ I hereditary 𝒫 𝐴) → ( [] ∪ I ) hereditary 𝒫 𝐴)
41, 2, 3mp2an 690 1 ( [] ∪ I ) hereditary 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  cun 3946  𝒫 cpw 4602   I cid 5573  ccnv 5675   [] crpss 7714   hereditary whe 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-rpss 7715  df-he 42826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator