MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundir Structured version   Visualization version   GIF version

Theorem imaundir 6097
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 5627 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
2 resundir 5942 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32rneqi 5876 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∪ (𝐵𝐶))
4 rnun 6092 . . 3 ran ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
51, 3, 43eqtri 2758 . 2 ((𝐴𝐵) “ 𝐶) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
6 df-ima 5627 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5627 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7uneq12i 4113 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
95, 8eqtr4i 2757 1 ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  ran crn 5615  cres 5616  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  fvun  6912  suppun  8114  fsuppun  9271  fpwwe2lem12  10533  ustuqtop1  24156  mbfres2  25573  imadifxp  32581  suppun2  32665  eulerpartlemt  34384  bj-projun  37036  bj-funun  37294  poimirlem3  37671  poimirlem15  37683  brtrclfv2  43768  frege131d  43805  unhe1  43826  frege110  44014  frege133  44037  aacllem  49841
  Copyright terms: Public domain W3C validator