MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundir Structured version   Visualization version   GIF version

Theorem imaundir 6150
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 5689 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
2 resundir 5996 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32rneqi 5936 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∪ (𝐵𝐶))
4 rnun 6145 . . 3 ran ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
51, 3, 43eqtri 2764 . 2 ((𝐴𝐵) “ 𝐶) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
6 df-ima 5689 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5689 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7uneq12i 4161 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
95, 8eqtr4i 2763 1 ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  ran crn 5677  cres 5678  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  fvun  6981  suppun  8168  fsuppun  9381  fpwwe2lem12  10636  ustuqtop1  23745  mbfres2  25161  imadifxp  31827  eulerpartlemt  33365  bj-projun  35870  bj-funun  36128  poimirlem3  36486  poimirlem15  36498  brtrclfv2  42468  frege131d  42505  unhe1  42526  frege110  42714  frege133  42737  aacllem  47838
  Copyright terms: Public domain W3C validator