| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundir | Structured version Visualization version GIF version | ||
| Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| imaundir | ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . . 3 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ran ((𝐴 ∪ 𝐵) ↾ 𝐶) | |
| 2 | resundir 5945 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | |
| 3 | 2 | rneqi 5879 | . . 3 ⊢ ran ((𝐴 ∪ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| 4 | rnun 6094 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) | |
| 5 | 1, 3, 4 | 3eqtri 2756 | . 2 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
| 6 | df-ima 5632 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 7 | df-ima 5632 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4117 | . 2 ⊢ ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
| 9 | 5, 8 | eqtr4i 2755 | 1 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 ran crn 5620 ↾ cres 5621 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: fvun 6913 suppun 8117 fsuppun 9277 fpwwe2lem12 10536 ustuqtop1 24127 mbfres2 25544 imadifxp 32545 suppun2 32626 eulerpartlemt 34339 bj-projun 36968 bj-funun 37226 poimirlem3 37603 poimirlem15 37615 brtrclfv2 43700 frege131d 43737 unhe1 43758 frege110 43946 frege133 43969 aacllem 49786 |
| Copyright terms: Public domain | W3C validator |