| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaundir | Structured version Visualization version GIF version | ||
| Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| imaundir | ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5627 | . . 3 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ran ((𝐴 ∪ 𝐵) ↾ 𝐶) | |
| 2 | resundir 5942 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | |
| 3 | 2 | rneqi 5876 | . . 3 ⊢ ran ((𝐴 ∪ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| 4 | rnun 6092 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) | |
| 5 | 1, 3, 4 | 3eqtri 2758 | . 2 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
| 6 | df-ima 5627 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 7 | df-ima 5627 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 8 | 6, 7 | uneq12i 4113 | . 2 ⊢ ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
| 9 | 5, 8 | eqtr4i 2757 | 1 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ran crn 5615 ↾ cres 5616 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: fvun 6912 suppun 8114 fsuppun 9271 fpwwe2lem12 10533 ustuqtop1 24156 mbfres2 25573 imadifxp 32581 suppun2 32665 eulerpartlemt 34384 bj-projun 37036 bj-funun 37294 poimirlem3 37671 poimirlem15 37683 brtrclfv2 43768 frege131d 43805 unhe1 43826 frege110 44014 frege133 44037 aacllem 49841 |
| Copyright terms: Public domain | W3C validator |