Step | Hyp | Ref
| Expression |
1 | | pwuni 4948 |
. . . . . . . . . 10
β’
β¨π₯, π¦β© β π« βͺ β¨π₯, π¦β© |
2 | | vex 3476 |
. . . . . . . . . . . 12
β’ π₯ β V |
3 | | vex 3476 |
. . . . . . . . . . . 12
β’ π¦ β V |
4 | 2, 3 | uniop 5514 |
. . . . . . . . . . 11
β’ βͺ β¨π₯, π¦β© = {π₯, π¦} |
5 | 4 | pweqi 4617 |
. . . . . . . . . 10
β’ π«
βͺ β¨π₯, π¦β© = π« {π₯, π¦} |
6 | 1, 5 | sseqtri 4017 |
. . . . . . . . 9
β’
β¨π₯, π¦β© β π« {π₯, π¦} |
7 | | pwuni 4948 |
. . . . . . . . . . 11
β’ {π₯, π¦} β π« βͺ {π₯,
π¦} |
8 | 2, 3 | unipr 4925 |
. . . . . . . . . . . 12
β’ βͺ {π₯,
π¦} = (π₯ βͺ π¦) |
9 | 8 | pweqi 4617 |
. . . . . . . . . . 11
β’ π«
βͺ {π₯, π¦} = π« (π₯ βͺ π¦) |
10 | 7, 9 | sseqtri 4017 |
. . . . . . . . . 10
β’ {π₯, π¦} β π« (π₯ βͺ π¦) |
11 | 10 | sspwi 4613 |
. . . . . . . . 9
β’ π«
{π₯, π¦} β π« π« (π₯ βͺ π¦) |
12 | 6, 11 | sstri 3990 |
. . . . . . . 8
β’
β¨π₯, π¦β© β π«
π« (π₯ βͺ π¦) |
13 | 2, 3 | unex 7735 |
. . . . . . . . . . 11
β’ (π₯ βͺ π¦) β V |
14 | 13 | pwex 5377 |
. . . . . . . . . 10
β’ π«
(π₯ βͺ π¦) β V |
15 | 14 | pwex 5377 |
. . . . . . . . 9
β’ π«
π« (π₯ βͺ π¦) β V |
16 | 15 | rankss 9846 |
. . . . . . . 8
β’
(β¨π₯, π¦β© β π«
π« (π₯ βͺ π¦) β (rankββ¨π₯, π¦β©) β (rankβπ«
π« (π₯ βͺ π¦))) |
17 | 12, 16 | ax-mp 5 |
. . . . . . 7
β’
(rankββ¨π₯,
π¦β©) β
(rankβπ« π« (π₯ βͺ π¦)) |
18 | | rankxplim.1 |
. . . . . . . . . . 11
β’ π΄ β V |
19 | 18 | rankel 9836 |
. . . . . . . . . 10
β’ (π₯ β π΄ β (rankβπ₯) β (rankβπ΄)) |
20 | | rankxplim.2 |
. . . . . . . . . . 11
β’ π΅ β V |
21 | 20 | rankel 9836 |
. . . . . . . . . 10
β’ (π¦ β π΅ β (rankβπ¦) β (rankβπ΅)) |
22 | 2, 3, 18, 20 | rankelun 9869 |
. . . . . . . . . 10
β’
(((rankβπ₯)
β (rankβπ΄) β§
(rankβπ¦) β
(rankβπ΅)) β
(rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) |
23 | 19, 21, 22 | syl2an 594 |
. . . . . . . . 9
β’ ((π₯ β π΄ β§ π¦ β π΅) β (rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) |
24 | 23 | adantl 480 |
. . . . . . . 8
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π₯ β π΄ β§ π¦ β π΅)) β (rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) |
25 | | ranklim 9841 |
. . . . . . . . . 10
β’ (Lim
(rankβ(π΄ βͺ π΅)) β ((rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)) β (rankβπ« (π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)))) |
26 | | ranklim 9841 |
. . . . . . . . . 10
β’ (Lim
(rankβ(π΄ βͺ π΅)) β ((rankβπ«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)) β (rankβπ« π«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)))) |
27 | 25, 26 | bitrd 278 |
. . . . . . . . 9
β’ (Lim
(rankβ(π΄ βͺ π΅)) β ((rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)) β (rankβπ« π«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)))) |
28 | 27 | adantr 479 |
. . . . . . . 8
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π₯ β π΄ β§ π¦ β π΅)) β ((rankβ(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)) β (rankβπ« π«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅)))) |
29 | 24, 28 | mpbid 231 |
. . . . . . 7
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π₯ β π΄ β§ π¦ β π΅)) β (rankβπ« π«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) |
30 | | rankon 9792 |
. . . . . . . 8
β’
(rankββ¨π₯,
π¦β©) β
On |
31 | | rankon 9792 |
. . . . . . . 8
β’
(rankβ(π΄ βͺ
π΅)) β
On |
32 | | ontr2 6410 |
. . . . . . . 8
β’
(((rankββ¨π₯, π¦β©) β On β§ (rankβ(π΄ βͺ π΅)) β On) β
(((rankββ¨π₯,
π¦β©) β
(rankβπ« π« (π₯ βͺ π¦)) β§ (rankβπ« π«
(π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) β (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅)))) |
33 | 30, 31, 32 | mp2an 688 |
. . . . . . 7
β’
(((rankββ¨π₯, π¦β©) β (rankβπ«
π« (π₯ βͺ π¦)) β§ (rankβπ«
π« (π₯ βͺ π¦)) β (rankβ(π΄ βͺ π΅))) β (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
34 | 17, 29, 33 | sylancr 585 |
. . . . . 6
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π₯ β π΄ β§ π¦ β π΅)) β (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
35 | 30, 31 | onsucssi 7832 |
. . . . . 6
β’
((rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅)) β suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
36 | 34, 35 | sylib 217 |
. . . . 5
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π₯ β π΄ β§ π¦ β π΅)) β suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
37 | 36 | ralrimivva 3198 |
. . . 4
β’ (Lim
(rankβ(π΄ βͺ π΅)) β βπ₯ β π΄ βπ¦ β π΅ suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
38 | | fveq2 6890 |
. . . . . . . 8
β’ (π§ = β¨π₯, π¦β© β (rankβπ§) = (rankββ¨π₯, π¦β©)) |
39 | | suceq 6429 |
. . . . . . . 8
β’
((rankβπ§) =
(rankββ¨π₯, π¦β©) β suc
(rankβπ§) = suc
(rankββ¨π₯, π¦β©)) |
40 | 38, 39 | syl 17 |
. . . . . . 7
β’ (π§ = β¨π₯, π¦β© β suc (rankβπ§) = suc (rankββ¨π₯, π¦β©)) |
41 | 40 | sseq1d 4012 |
. . . . . 6
β’ (π§ = β¨π₯, π¦β© β (suc (rankβπ§) β (rankβ(π΄ βͺ π΅)) β suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅)))) |
42 | 41 | ralxp 5840 |
. . . . 5
β’
(βπ§ β
(π΄ Γ π΅)suc (rankβπ§) β (rankβ(π΄ βͺ π΅)) β βπ₯ β π΄ βπ¦ β π΅ suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅))) |
43 | 18, 20 | xpex 7742 |
. . . . . 6
β’ (π΄ Γ π΅) β V |
44 | 43 | rankbnd 9865 |
. . . . 5
β’
(βπ§ β
(π΄ Γ π΅)suc (rankβπ§) β (rankβ(π΄ βͺ π΅)) β (rankβ(π΄ Γ π΅)) β (rankβ(π΄ βͺ π΅))) |
45 | 42, 44 | bitr3i 276 |
. . . 4
β’
(βπ₯ β
π΄ βπ¦ β π΅ suc (rankββ¨π₯, π¦β©) β (rankβ(π΄ βͺ π΅)) β (rankβ(π΄ Γ π΅)) β (rankβ(π΄ βͺ π΅))) |
46 | 37, 45 | sylib 217 |
. . 3
β’ (Lim
(rankβ(π΄ βͺ π΅)) β (rankβ(π΄ Γ π΅)) β (rankβ(π΄ βͺ π΅))) |
47 | 46 | adantr 479 |
. 2
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π΄ Γ π΅) β β
) β (rankβ(π΄ Γ π΅)) β (rankβ(π΄ βͺ π΅))) |
48 | 18, 20 | rankxpl 9872 |
. . 3
β’ ((π΄ Γ π΅) β β
β (rankβ(π΄ βͺ π΅)) β (rankβ(π΄ Γ π΅))) |
49 | 48 | adantl 480 |
. 2
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π΄ Γ π΅) β β
) β (rankβ(π΄ βͺ π΅)) β (rankβ(π΄ Γ π΅))) |
50 | 47, 49 | eqssd 3998 |
1
β’ ((Lim
(rankβ(π΄ βͺ π΅)) β§ (π΄ Γ π΅) β β
) β (rankβ(π΄ Γ π΅)) = (rankβ(π΄ βͺ π΅))) |