MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim Structured version   Visualization version   GIF version

Theorem rankxplim 9876
Description: The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 9879 for the successor case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1 𝐴 ∈ V
rankxplim.2 𝐡 ∈ V
Assertion
Ref Expression
rankxplim ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (𝐴 Γ— 𝐡) β‰  βˆ…) β†’ (rankβ€˜(𝐴 Γ— 𝐡)) = (rankβ€˜(𝐴 βˆͺ 𝐡)))

Proof of Theorem rankxplim
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4948 . . . . . . . . . 10 ⟨π‘₯, π‘¦βŸ© βŠ† 𝒫 βˆͺ ⟨π‘₯, π‘¦βŸ©
2 vex 3476 . . . . . . . . . . . 12 π‘₯ ∈ V
3 vex 3476 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3uniop 5514 . . . . . . . . . . 11 βˆͺ ⟨π‘₯, π‘¦βŸ© = {π‘₯, 𝑦}
54pweqi 4617 . . . . . . . . . 10 𝒫 βˆͺ ⟨π‘₯, π‘¦βŸ© = 𝒫 {π‘₯, 𝑦}
61, 5sseqtri 4017 . . . . . . . . 9 ⟨π‘₯, π‘¦βŸ© βŠ† 𝒫 {π‘₯, 𝑦}
7 pwuni 4948 . . . . . . . . . . 11 {π‘₯, 𝑦} βŠ† 𝒫 βˆͺ {π‘₯, 𝑦}
82, 3unipr 4925 . . . . . . . . . . . 12 βˆͺ {π‘₯, 𝑦} = (π‘₯ βˆͺ 𝑦)
98pweqi 4617 . . . . . . . . . . 11 𝒫 βˆͺ {π‘₯, 𝑦} = 𝒫 (π‘₯ βˆͺ 𝑦)
107, 9sseqtri 4017 . . . . . . . . . 10 {π‘₯, 𝑦} βŠ† 𝒫 (π‘₯ βˆͺ 𝑦)
1110sspwi 4613 . . . . . . . . 9 𝒫 {π‘₯, 𝑦} βŠ† 𝒫 𝒫 (π‘₯ βˆͺ 𝑦)
126, 11sstri 3990 . . . . . . . 8 ⟨π‘₯, π‘¦βŸ© βŠ† 𝒫 𝒫 (π‘₯ βˆͺ 𝑦)
132, 3unex 7735 . . . . . . . . . . 11 (π‘₯ βˆͺ 𝑦) ∈ V
1413pwex 5377 . . . . . . . . . 10 𝒫 (π‘₯ βˆͺ 𝑦) ∈ V
1514pwex 5377 . . . . . . . . 9 𝒫 𝒫 (π‘₯ βˆͺ 𝑦) ∈ V
1615rankss 9846 . . . . . . . 8 (⟨π‘₯, π‘¦βŸ© βŠ† 𝒫 𝒫 (π‘₯ βˆͺ 𝑦) β†’ (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)))
1712, 16ax-mp 5 . . . . . . 7 (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦))
18 rankxplim.1 . . . . . . . . . . 11 𝐴 ∈ V
1918rankel 9836 . . . . . . . . . 10 (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΄))
20 rankxplim.2 . . . . . . . . . . 11 𝐡 ∈ V
2120rankel 9836 . . . . . . . . . 10 (𝑦 ∈ 𝐡 β†’ (rankβ€˜π‘¦) ∈ (rankβ€˜π΅))
222, 3, 18, 20rankelun 9869 . . . . . . . . . 10 (((rankβ€˜π‘₯) ∈ (rankβ€˜π΄) ∧ (rankβ€˜π‘¦) ∈ (rankβ€˜π΅)) β†’ (rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
2319, 21, 22syl2an 594 . . . . . . . . 9 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) β†’ (rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
2423adantl 480 . . . . . . . 8 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ (rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
25 ranklim 9841 . . . . . . . . . 10 (Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ ((rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜π’« (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))))
26 ranklim 9841 . . . . . . . . . 10 (Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ ((rankβ€˜π’« (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))))
2725, 26bitrd 278 . . . . . . . . 9 (Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ ((rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))))
2827adantr 479 . . . . . . . 8 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ ((rankβ€˜(π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))))
2924, 28mpbid 231 . . . . . . 7 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
30 rankon 9792 . . . . . . . 8 (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ On
31 rankon 9792 . . . . . . . 8 (rankβ€˜(𝐴 βˆͺ 𝐡)) ∈ On
32 ontr2 6410 . . . . . . . 8 (((rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ On ∧ (rankβ€˜(𝐴 βˆͺ 𝐡)) ∈ On) β†’ (((rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∧ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))) β†’ (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))))
3330, 31, 32mp2an 688 . . . . . . 7 (((rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∧ (rankβ€˜π’« 𝒫 (π‘₯ βˆͺ 𝑦)) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡))) β†’ (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
3417, 29, 33sylancr 585 . . . . . 6 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)))
3530, 31onsucssi 7832 . . . . . 6 ((rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3634, 35sylib 217 . . . . 5 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3736ralrimivva 3198 . . . 4 (Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
38 fveq2 6890 . . . . . . . 8 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (rankβ€˜π‘§) = (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©))
39 suceq 6429 . . . . . . . 8 ((rankβ€˜π‘§) = (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) β†’ suc (rankβ€˜π‘§) = suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©))
4038, 39syl 17 . . . . . . 7 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ suc (rankβ€˜π‘§) = suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©))
4140sseq1d 4012 . . . . . 6 (𝑧 = ⟨π‘₯, π‘¦βŸ© β†’ (suc (rankβ€˜π‘§) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡))))
4241ralxp 5840 . . . . 5 (βˆ€π‘§ ∈ (𝐴 Γ— 𝐡)suc (rankβ€˜π‘§) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
4318, 20xpex 7742 . . . . . 6 (𝐴 Γ— 𝐡) ∈ V
4443rankbnd 9865 . . . . 5 (βˆ€π‘§ ∈ (𝐴 Γ— 𝐡)suc (rankβ€˜π‘§) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜(𝐴 Γ— 𝐡)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
4542, 44bitr3i 276 . . . 4 (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 suc (rankβ€˜βŸ¨π‘₯, π‘¦βŸ©) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ (rankβ€˜(𝐴 Γ— 𝐡)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
4637, 45sylib 217 . . 3 (Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ (rankβ€˜(𝐴 Γ— 𝐡)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
4746adantr 479 . 2 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (𝐴 Γ— 𝐡) β‰  βˆ…) β†’ (rankβ€˜(𝐴 Γ— 𝐡)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
4818, 20rankxpl 9872 . . 3 ((𝐴 Γ— 𝐡) β‰  βˆ… β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) βŠ† (rankβ€˜(𝐴 Γ— 𝐡)))
4948adantl 480 . 2 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (𝐴 Γ— 𝐡) β‰  βˆ…) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) βŠ† (rankβ€˜(𝐴 Γ— 𝐡)))
5047, 49eqssd 3998 1 ((Lim (rankβ€˜(𝐴 βˆͺ 𝐡)) ∧ (𝐴 Γ— 𝐡) β‰  βˆ…) β†’ (rankβ€˜(𝐴 Γ— 𝐡)) = (rankβ€˜(𝐴 βˆͺ 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  Vcvv 3472   βˆͺ cun 3945   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {cpr 4629  βŸ¨cop 4633  βˆͺ cuni 4907   Γ— cxp 5673  Oncon0 6363  Lim wlim 6364  suc csuc 6365  β€˜cfv 6542  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762
This theorem is referenced by:  rankxplim3  9878
  Copyright terms: Public domain W3C validator