MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22522
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22521. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22523 and indistps2ALT 22525 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Baseβ€˜πΎ) = 𝐴
indistps2.j (TopOpenβ€˜πΎ) = {βˆ…, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Baseβ€˜πΎ) = 𝐴
2 indistps2.j . 2 (TopOpenβ€˜πΎ) = {βˆ…, 𝐴}
3 0ex 5307 . . . 4 βˆ… ∈ V
4 fvex 6904 . . . . 5 (Baseβ€˜πΎ) ∈ V
51, 4eqeltrri 2830 . . . 4 𝐴 ∈ V
63, 5unipr 4926 . . 3 βˆͺ {βˆ…, 𝐴} = (βˆ… βˆͺ 𝐴)
7 uncom 4153 . . 3 (βˆ… βˆͺ 𝐴) = (𝐴 βˆͺ βˆ…)
8 un0 4390 . . 3 (𝐴 βˆͺ βˆ…) = 𝐴
96, 7, 83eqtrri 2765 . 2 𝐴 = βˆͺ {βˆ…, 𝐴}
10 indistop 22512 . 2 {βˆ…, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22451 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3946  βˆ…c0 4322  {cpr 4630  βˆͺ cuni 4908  β€˜cfv 6543  Basecbs 17146  TopOpenctopn 17369  TopSpctps 22441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22403  df-topon 22420  df-topsp 22442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator