![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23039. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23041 and indistps2ALT 23043 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
Ref | Expression |
---|---|
indistps2.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2 | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2.a | . 2 ⊢ (Base‘𝐾) = 𝐴 | |
2 | indistps2.j | . 2 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
3 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
4 | fvex 6933 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
5 | 1, 4 | eqeltrri 2841 | . . . 4 ⊢ 𝐴 ∈ V |
6 | 3, 5 | unipr 4948 | . . 3 ⊢ ∪ {∅, 𝐴} = (∅ ∪ 𝐴) |
7 | uncom 4181 | . . 3 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
8 | un0 4417 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
9 | 6, 7, 8 | 3eqtrri 2773 | . 2 ⊢ 𝐴 = ∪ {∅, 𝐴} |
10 | indistop 23030 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
11 | 1, 2, 9, 10 | istpsi 22969 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {cpr 4650 ∪ cuni 4931 ‘cfv 6573 Basecbs 17258 TopOpenctopn 17481 TopSpctps 22959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 df-topsp 22960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |