![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set π΄ expressed as a topological space, using direct component assignments. Compare with indistps 22521. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22523 and indistps2ALT 22525 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
Ref | Expression |
---|---|
indistps2.a | β’ (BaseβπΎ) = π΄ |
indistps2.j | β’ (TopOpenβπΎ) = {β , π΄} |
Ref | Expression |
---|---|
indistps2 | β’ πΎ β TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2.a | . 2 β’ (BaseβπΎ) = π΄ | |
2 | indistps2.j | . 2 β’ (TopOpenβπΎ) = {β , π΄} | |
3 | 0ex 5307 | . . . 4 β’ β β V | |
4 | fvex 6904 | . . . . 5 β’ (BaseβπΎ) β V | |
5 | 1, 4 | eqeltrri 2830 | . . . 4 β’ π΄ β V |
6 | 3, 5 | unipr 4926 | . . 3 β’ βͺ {β , π΄} = (β βͺ π΄) |
7 | uncom 4153 | . . 3 β’ (β βͺ π΄) = (π΄ βͺ β ) | |
8 | un0 4390 | . . 3 β’ (π΄ βͺ β ) = π΄ | |
9 | 6, 7, 8 | 3eqtrri 2765 | . 2 β’ π΄ = βͺ {β , π΄} |
10 | indistop 22512 | . 2 β’ {β , π΄} β Top | |
11 | 1, 2, 9, 10 | istpsi 22451 | 1 β’ πΎ β TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3946 β c0 4322 {cpr 4630 βͺ cuni 4908 βcfv 6543 Basecbs 17146 TopOpenctopn 17369 TopSpctps 22441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-top 22403 df-topon 22420 df-topsp 22442 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |