MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22928
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22927. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22929 and indistps2ALT 22931 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5307 . . . 4 ∅ ∈ V
4 fvex 6910 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2826 . . . 4 𝐴 ∈ V
63, 5unipr 4925 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4152 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4391 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2761 . 2 𝐴 = {∅, 𝐴}
10 indistop 22918 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22857 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  cun 3945  c0 4323  {cpr 4631   cuni 4908  cfv 6548  Basecbs 17180  TopOpenctopn 17403  TopSpctps 22847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-top 22809  df-topon 22826  df-topsp 22848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator