MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22955
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22954. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22956 and indistps2ALT 22957 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5282 . . . 4 ∅ ∈ V
4 fvex 6894 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2832 . . . 4 𝐴 ∈ V
63, 5unipr 4905 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4138 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4374 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2764 . 2 𝐴 = {∅, 𝐴}
10 indistop 22945 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22885 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  c0 4313  {cpr 4608   cuni 4888  cfv 6536  Basecbs 17233  TopOpenctopn 17440  TopSpctps 22875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-top 22837  df-topon 22854  df-topsp 22876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator