![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set π΄ expressed as a topological space, using direct component assignments. Compare with indistps 22514. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22516 and indistps2ALT 22518 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
Ref | Expression |
---|---|
indistps2.a | β’ (BaseβπΎ) = π΄ |
indistps2.j | β’ (TopOpenβπΎ) = {β , π΄} |
Ref | Expression |
---|---|
indistps2 | β’ πΎ β TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2.a | . 2 β’ (BaseβπΎ) = π΄ | |
2 | indistps2.j | . 2 β’ (TopOpenβπΎ) = {β , π΄} | |
3 | 0ex 5308 | . . . 4 β’ β β V | |
4 | fvex 6905 | . . . . 5 β’ (BaseβπΎ) β V | |
5 | 1, 4 | eqeltrri 2831 | . . . 4 β’ π΄ β V |
6 | 3, 5 | unipr 4927 | . . 3 β’ βͺ {β , π΄} = (β βͺ π΄) |
7 | uncom 4154 | . . 3 β’ (β βͺ π΄) = (π΄ βͺ β ) | |
8 | un0 4391 | . . 3 β’ (π΄ βͺ β ) = π΄ | |
9 | 6, 7, 8 | 3eqtrri 2766 | . 2 β’ π΄ = βͺ {β , π΄} |
10 | indistop 22505 | . 2 β’ {β , π΄} β Top | |
11 | 1, 2, 9, 10 | istpsi 22444 | 1 β’ πΎ β TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 Vcvv 3475 βͺ cun 3947 β c0 4323 {cpr 4631 βͺ cuni 4909 βcfv 6544 Basecbs 17144 TopOpenctopn 17367 TopSpctps 22434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-top 22396 df-topon 22413 df-topsp 22435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |