MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22875
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22874. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22876 and indistps2ALT 22877 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5257 . . . 4 ∅ ∈ V
4 fvex 6853 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2825 . . . 4 𝐴 ∈ V
63, 5unipr 4884 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4117 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4353 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2757 . 2 𝐴 = {∅, 𝐴}
10 indistop 22865 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22805 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  c0 4292  {cpr 4587   cuni 4867  cfv 6499  Basecbs 17155  TopOpenctopn 17360  TopSpctps 22795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-top 22757  df-topon 22774  df-topsp 22796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator