MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 21194
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 21193. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 21195 and indistps2ALT 21196 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5016 . . . 4 ∅ ∈ V
4 fvex 6450 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2903 . . . 4 𝐴 ∈ V
63, 5unipr 4673 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 3986 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4194 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2854 . 2 𝐴 = {∅, 𝐴}
10 indistop 21184 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 21124 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wcel 2164  Vcvv 3414  cun 3796  c0 4146  {cpr 4401   cuni 4660  cfv 6127  Basecbs 16229  TopOpenctopn 16442  TopSpctps 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-top 21076  df-topon 21093  df-topsp 21115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator