MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22070
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22069. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22071 and indistps2ALT 22073 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5226 . . . 4 ∅ ∈ V
4 fvex 6769 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2836 . . . 4 𝐴 ∈ V
63, 5unipr 4854 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4083 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4321 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2771 . 2 𝐴 = {∅, 𝐴}
10 indistop 22060 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 21999 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {cpr 4560   cuni 4836  cfv 6418  Basecbs 16840  TopOpenctopn 17049  TopSpctps 21989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-top 21951  df-topon 21968  df-topsp 21990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator