![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23034. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23036 and indistps2ALT 23038 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
Ref | Expression |
---|---|
indistps2.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2 | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2.a | . 2 ⊢ (Base‘𝐾) = 𝐴 | |
2 | indistps2.j | . 2 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
3 | 0ex 5313 | . . . 4 ⊢ ∅ ∈ V | |
4 | fvex 6920 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
5 | 1, 4 | eqeltrri 2836 | . . . 4 ⊢ 𝐴 ∈ V |
6 | 3, 5 | unipr 4929 | . . 3 ⊢ ∪ {∅, 𝐴} = (∅ ∪ 𝐴) |
7 | uncom 4168 | . . 3 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
8 | un0 4400 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
9 | 6, 7, 8 | 3eqtrri 2768 | . 2 ⊢ 𝐴 = ∪ {∅, 𝐴} |
10 | indistop 23025 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
11 | 1, 2, 9, 10 | istpsi 22964 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∅c0 4339 {cpr 4633 ∪ cuni 4912 ‘cfv 6563 Basecbs 17245 TopOpenctopn 17468 TopSpctps 22954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-top 22916 df-topon 22933 df-topsp 22955 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |