MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22897
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22896. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22898 and indistps2ALT 22899 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5246 . . . 4 ∅ ∈ V
4 fvex 6835 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2825 . . . 4 𝐴 ∈ V
63, 5unipr 4875 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4109 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4345 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2757 . 2 𝐴 = {∅, 𝐴}
10 indistop 22887 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22827 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  c0 4284  {cpr 4579   cuni 4858  cfv 6482  Basecbs 17120  TopOpenctopn 17325  TopSpctps 22817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-top 22779  df-topon 22796  df-topsp 22818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator