MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22162
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22161. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22163 and indistps2ALT 22165 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5231 . . . 4 ∅ ∈ V
4 fvex 6787 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2836 . . . 4 𝐴 ∈ V
63, 5unipr 4857 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4087 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4324 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2771 . 2 𝐴 = {∅, 𝐴}
10 indistop 22152 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22091 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {cpr 4563   cuni 4839  cfv 6433  Basecbs 16912  TopOpenctopn 17132  TopSpctps 22081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-topon 22060  df-topsp 22082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator