MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22906
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22905. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22907 and indistps2ALT 22908 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5265 . . . 4 ∅ ∈ V
4 fvex 6874 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2826 . . . 4 𝐴 ∈ V
63, 5unipr 4891 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4124 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4360 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2758 . 2 𝐴 = {∅, 𝐴}
10 indistop 22896 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22836 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {cpr 4594   cuni 4874  cfv 6514  Basecbs 17186  TopOpenctopn 17391  TopSpctps 22826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-top 22788  df-topon 22805  df-topsp 22827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator