MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 23040
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23039. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23041 and indistps2ALT 23043 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5325 . . . 4 ∅ ∈ V
4 fvex 6933 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2841 . . . 4 𝐴 ∈ V
63, 5unipr 4948 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4181 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4417 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2773 . 2 𝐴 = {∅, 𝐴}
10 indistop 23030 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22969 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  c0 4352  {cpr 4650   cuni 4931  cfv 6573  Basecbs 17258  TopOpenctopn 17481  TopSpctps 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-top 22921  df-topon 22938  df-topsp 22960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator