Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22069. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22071 and indistps2ALT 22073 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
Ref | Expression |
---|---|
indistps2.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2 | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2.a | . 2 ⊢ (Base‘𝐾) = 𝐴 | |
2 | indistps2.j | . 2 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
3 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
4 | fvex 6769 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
5 | 1, 4 | eqeltrri 2836 | . . . 4 ⊢ 𝐴 ∈ V |
6 | 3, 5 | unipr 4854 | . . 3 ⊢ ∪ {∅, 𝐴} = (∅ ∪ 𝐴) |
7 | uncom 4083 | . . 3 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
8 | un0 4321 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
9 | 6, 7, 8 | 3eqtrri 2771 | . 2 ⊢ 𝐴 = ∪ {∅, 𝐴} |
10 | indistop 22060 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
11 | 1, 2, 9, 10 | istpsi 21999 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {cpr 4560 ∪ cuni 4836 ‘cfv 6418 Basecbs 16840 TopOpenctopn 17049 TopSpctps 21989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-topon 21968 df-topsp 21990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |