MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 23035
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23034. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23036 and indistps2ALT 23038 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5313 . . . 4 ∅ ∈ V
4 fvex 6920 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2836 . . . 4 𝐴 ∈ V
63, 5unipr 4929 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4168 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4400 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2768 . 2 𝐴 = {∅, 𝐴}
10 indistop 23025 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22964 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  c0 4339  {cpr 4633   cuni 4912  cfv 6563  Basecbs 17245  TopOpenctopn 17468  TopSpctps 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-top 22916  df-topon 22933  df-topsp 22955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator