| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22896. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22898 and indistps2ALT 22899 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| indistps2.a | ⊢ (Base‘𝐾) = 𝐴 |
| indistps2.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
| Ref | Expression |
|---|---|
| indistps2 | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistps2.a | . 2 ⊢ (Base‘𝐾) = 𝐴 | |
| 2 | indistps2.j | . 2 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
| 3 | 0ex 5246 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | fvex 6835 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 5 | 1, 4 | eqeltrri 2825 | . . . 4 ⊢ 𝐴 ∈ V |
| 6 | 3, 5 | unipr 4875 | . . 3 ⊢ ∪ {∅, 𝐴} = (∅ ∪ 𝐴) |
| 7 | uncom 4109 | . . 3 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 8 | un0 4345 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 9 | 6, 7, 8 | 3eqtrri 2757 | . 2 ⊢ 𝐴 = ∪ {∅, 𝐴} |
| 10 | indistop 22887 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
| 11 | 1, 2, 9, 10 | istpsi 22827 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ∅c0 4284 {cpr 4579 ∪ cuni 4858 ‘cfv 6482 Basecbs 17120 TopOpenctopn 17325 TopSpctps 22817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-top 22779 df-topon 22796 df-topsp 22818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |