MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22515
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22514. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22516 and indistps2ALT 22518 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Baseβ€˜πΎ) = 𝐴
indistps2.j (TopOpenβ€˜πΎ) = {βˆ…, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Baseβ€˜πΎ) = 𝐴
2 indistps2.j . 2 (TopOpenβ€˜πΎ) = {βˆ…, 𝐴}
3 0ex 5308 . . . 4 βˆ… ∈ V
4 fvex 6905 . . . . 5 (Baseβ€˜πΎ) ∈ V
51, 4eqeltrri 2831 . . . 4 𝐴 ∈ V
63, 5unipr 4927 . . 3 βˆͺ {βˆ…, 𝐴} = (βˆ… βˆͺ 𝐴)
7 uncom 4154 . . 3 (βˆ… βˆͺ 𝐴) = (𝐴 βˆͺ βˆ…)
8 un0 4391 . . 3 (𝐴 βˆͺ βˆ…) = 𝐴
96, 7, 83eqtrri 2766 . 2 𝐴 = βˆͺ {βˆ…, 𝐴}
10 indistop 22505 . 2 {βˆ…, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22444 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   ∈ wcel 2107  Vcvv 3475   βˆͺ cun 3947  βˆ…c0 4323  {cpr 4631  βˆͺ cuni 4909  β€˜cfv 6544  Basecbs 17144  TopOpenctopn 17367  TopSpctps 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22396  df-topon 22413  df-topsp 22435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator