| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistps2 | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22905. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22907 and indistps2ALT 22908 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| indistps2.a | ⊢ (Base‘𝐾) = 𝐴 |
| indistps2.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
| Ref | Expression |
|---|---|
| indistps2 | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistps2.a | . 2 ⊢ (Base‘𝐾) = 𝐴 | |
| 2 | indistps2.j | . 2 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
| 3 | 0ex 5265 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | fvex 6874 | . . . . 5 ⊢ (Base‘𝐾) ∈ V | |
| 5 | 1, 4 | eqeltrri 2826 | . . . 4 ⊢ 𝐴 ∈ V |
| 6 | 3, 5 | unipr 4891 | . . 3 ⊢ ∪ {∅, 𝐴} = (∅ ∪ 𝐴) |
| 7 | uncom 4124 | . . 3 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 8 | un0 4360 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 9 | 6, 7, 8 | 3eqtrri 2758 | . 2 ⊢ 𝐴 = ∪ {∅, 𝐴} |
| 10 | indistop 22896 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
| 11 | 1, 2, 9, 10 | istpsi 22836 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ∅c0 4299 {cpr 4594 ∪ cuni 4874 ‘cfv 6514 Basecbs 17186 TopOpenctopn 17391 TopSpctps 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-top 22788 df-topon 22805 df-topsp 22827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |