MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 23020
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23019. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23021 and indistps2ALT 23023 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5306 . . . 4 ∅ ∈ V
4 fvex 6918 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2837 . . . 4 𝐴 ∈ V
63, 5unipr 4923 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4157 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4393 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2769 . 2 𝐴 = {∅, 𝐴}
10 indistop 23010 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22949 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3479  cun 3948  c0 4332  {cpr 4627   cuni 4906  cfv 6560  Basecbs 17248  TopOpenctopn 17467  TopSpctps 22939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-top 22901  df-topon 22918  df-topsp 22940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator