MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 21617
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 21616. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 21618 and indistps2ALT 21619 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5175 . . . 4 ∅ ∈ V
4 fvex 6658 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2887 . . . 4 𝐴 ∈ V
63, 5unipr 4817 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4080 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4298 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2826 . 2 𝐴 = {∅, 𝐴}
10 indistop 21607 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 21547 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879  c0 4243  {cpr 4527   cuni 4800  cfv 6324  Basecbs 16475  TopOpenctopn 16687  TopSpctps 21537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-top 21499  df-topon 21516  df-topsp 21538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator