MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 22899
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22898. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22900 and indistps2ALT 22901 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5262 . . . 4 ∅ ∈ V
4 fvex 6871 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2825 . . . 4 𝐴 ∈ V
63, 5unipr 4888 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4121 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4357 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2757 . 2 𝐴 = {∅, 𝐴}
10 indistop 22889 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22829 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  c0 4296  {cpr 4591   cuni 4871  cfv 6511  Basecbs 17179  TopOpenctopn 17384  TopSpctps 22819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798  df-topsp 22820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator