MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 23019
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23018. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23020 and indistps2ALT 23022 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5307 . . . 4 ∅ ∈ V
4 fvex 6919 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2838 . . . 4 𝐴 ∈ V
63, 5unipr 4924 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4158 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4394 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2770 . 2 𝐴 = {∅, 𝐴}
10 indistop 23009 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 22948 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  c0 4333  {cpr 4628   cuni 4907  cfv 6561  Basecbs 17247  TopOpenctopn 17466  TopSpctps 22938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-top 22900  df-topon 22917  df-topsp 22939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator