MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Structured version   Visualization version   GIF version

Theorem mrcun 16893
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcun ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mre1cl 16865 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
3 elpw2g 5247 . . . . . . 7 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
42, 3syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
54biimpar 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
653adant3 1128 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑈 ∈ 𝒫 𝑋)
7 elpw2g 5247 . . . . . . 7 (𝑋𝐶 → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
82, 7syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
98biimpar 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
1093adant2 1127 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
116, 10prssd 4755 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋)
12 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1312mrcuni 16892 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
141, 11, 13syl2anc 586 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
15 uniprg 4856 . . . 4 ((𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
166, 10, 15syl2anc 586 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
1716fveq2d 6674 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹‘(𝑈𝑉)))
1812mrcf 16880 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
1918ffnd 6515 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
20193ad2ant1 1129 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐹 Fn 𝒫 𝑋)
21 fnimapr 6747 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2220, 6, 10, 21syl3anc 1367 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2322unieqd 4852 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
24 fvex 6683 . . . . 5 (𝐹𝑈) ∈ V
25 fvex 6683 . . . . 5 (𝐹𝑉) ∈ V
2624, 25unipr 4855 . . . 4 {(𝐹𝑈), (𝐹𝑉)} = ((𝐹𝑈) ∪ (𝐹𝑉))
2723, 26syl6eq 2872 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = ((𝐹𝑈) ∪ (𝐹𝑉)))
2827fveq2d 6674 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
2914, 17, 283eqtr3d 2864 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  cun 3934  wss 3936  𝒫 cpw 4539  {cpr 4569   cuni 4838  cima 5558   Fn wfn 6350  cfv 6355  Moorecmre 16853  mrClscmrc 16854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-mre 16857  df-mrc 16858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator