Proof of Theorem mrcun
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
2 | | mre1cl 17097 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
3 | | elpw2g 5237 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
5 | 4 | biimpar 481 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
6 | 5 | 3adant3 1134 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
7 | | elpw2g 5237 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → (𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋)) |
8 | 2, 7 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋)) |
9 | 8 | biimpar 481 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → 𝑉 ∈ 𝒫 𝑋) |
10 | 9 | 3adant2 1133 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝑉 ∈ 𝒫 𝑋) |
11 | 6, 10 | prssd 4735 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋) |
12 | | mrcfval.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
13 | 12 | mrcuni 17124 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘∪ (𝐹 “ {𝑈, 𝑉}))) |
14 | 1, 11, 13 | syl2anc 587 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘∪ (𝐹 “ {𝑈, 𝑉}))) |
15 | | uniprg 4836 |
. . . 4
⊢ ((𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋) → ∪ {𝑈, 𝑉} = (𝑈 ∪ 𝑉)) |
16 | 6, 10, 15 | syl2anc 587 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ {𝑈, 𝑉} = (𝑈 ∪ 𝑉)) |
17 | 16 | fveq2d 6721 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘(𝑈 ∪ 𝑉))) |
18 | 12 | mrcf 17112 |
. . . . . . . 8
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
19 | 18 | ffnd 6546 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋) |
20 | 19 | 3ad2ant1 1135 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝐹 Fn 𝒫 𝑋) |
21 | | fnimapr 6795 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹‘𝑈), (𝐹‘𝑉)}) |
22 | 20, 6, 10, 21 | syl3anc 1373 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹‘𝑈), (𝐹‘𝑉)}) |
23 | 22 | unieqd 4833 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ (𝐹 “ {𝑈, 𝑉}) = ∪ {(𝐹‘𝑈), (𝐹‘𝑉)}) |
24 | | fvex 6730 |
. . . . 5
⊢ (𝐹‘𝑈) ∈ V |
25 | | fvex 6730 |
. . . . 5
⊢ (𝐹‘𝑉) ∈ V |
26 | 24, 25 | unipr 4837 |
. . . 4
⊢ ∪ {(𝐹‘𝑈), (𝐹‘𝑉)} = ((𝐹‘𝑈) ∪ (𝐹‘𝑉)) |
27 | 23, 26 | eqtrdi 2794 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ (𝐹 “ {𝑈, 𝑉}) = ((𝐹‘𝑈) ∪ (𝐹‘𝑉))) |
28 | 27 | fveq2d 6721 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) |
29 | 14, 17, 28 | 3eqtr3d 2785 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘(𝑈 ∪ 𝑉)) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) |