Proof of Theorem mrcun
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| 2 | | mre1cl 17637 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
| 3 | | elpw2g 5333 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
| 5 | 4 | biimpar 477 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
| 6 | 5 | 3adant3 1133 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
| 7 | | elpw2g 5333 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → (𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋)) |
| 8 | 2, 7 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋)) |
| 9 | 8 | biimpar 477 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉 ⊆ 𝑋) → 𝑉 ∈ 𝒫 𝑋) |
| 10 | 9 | 3adant2 1132 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝑉 ∈ 𝒫 𝑋) |
| 11 | 6, 10 | prssd 4822 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋) |
| 12 | | mrcfval.f |
. . . 4
⊢ 𝐹 = (mrCls‘𝐶) |
| 13 | 12 | mrcuni 17664 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘∪ (𝐹 “ {𝑈, 𝑉}))) |
| 14 | 1, 11, 13 | syl2anc 584 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘∪ (𝐹 “ {𝑈, 𝑉}))) |
| 15 | | uniprg 4923 |
. . . 4
⊢ ((𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋) → ∪ {𝑈, 𝑉} = (𝑈 ∪ 𝑉)) |
| 16 | 6, 10, 15 | syl2anc 584 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ {𝑈, 𝑉} = (𝑈 ∪ 𝑉)) |
| 17 | 16 | fveq2d 6910 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ {𝑈, 𝑉}) = (𝐹‘(𝑈 ∪ 𝑉))) |
| 18 | 12 | mrcf 17652 |
. . . . . . . 8
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 19 | 18 | ffnd 6737 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋) |
| 20 | 19 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → 𝐹 Fn 𝒫 𝑋) |
| 21 | | fnimapr 6992 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹‘𝑈), (𝐹‘𝑉)}) |
| 22 | 20, 6, 10, 21 | syl3anc 1373 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹‘𝑈), (𝐹‘𝑉)}) |
| 23 | 22 | unieqd 4920 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ (𝐹 “ {𝑈, 𝑉}) = ∪ {(𝐹‘𝑈), (𝐹‘𝑉)}) |
| 24 | | fvex 6919 |
. . . . 5
⊢ (𝐹‘𝑈) ∈ V |
| 25 | | fvex 6919 |
. . . . 5
⊢ (𝐹‘𝑉) ∈ V |
| 26 | 24, 25 | unipr 4924 |
. . . 4
⊢ ∪ {(𝐹‘𝑈), (𝐹‘𝑉)} = ((𝐹‘𝑈) ∪ (𝐹‘𝑉)) |
| 27 | 23, 26 | eqtrdi 2793 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → ∪ (𝐹 “ {𝑈, 𝑉}) = ((𝐹‘𝑈) ∪ (𝐹‘𝑉))) |
| 28 | 27 | fveq2d 6910 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘∪ (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) |
| 29 | 14, 17, 28 | 3eqtr3d 2785 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘(𝑈 ∪ 𝑉)) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) |