MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Structured version   Visualization version   GIF version

Theorem mrcun 17331
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcun ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mre1cl 17303 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
3 elpw2g 5268 . . . . . . 7 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
42, 3syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
54biimpar 478 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
653adant3 1131 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑈 ∈ 𝒫 𝑋)
7 elpw2g 5268 . . . . . . 7 (𝑋𝐶 → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
82, 7syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
98biimpar 478 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
1093adant2 1130 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
116, 10prssd 4755 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋)
12 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1312mrcuni 17330 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
141, 11, 13syl2anc 584 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
15 uniprg 4856 . . . 4 ((𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
166, 10, 15syl2anc 584 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
1716fveq2d 6778 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹‘(𝑈𝑉)))
1812mrcf 17318 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
1918ffnd 6601 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
20193ad2ant1 1132 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐹 Fn 𝒫 𝑋)
21 fnimapr 6852 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2220, 6, 10, 21syl3anc 1370 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2322unieqd 4853 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
24 fvex 6787 . . . . 5 (𝐹𝑈) ∈ V
25 fvex 6787 . . . . 5 (𝐹𝑉) ∈ V
2624, 25unipr 4857 . . . 4 {(𝐹𝑈), (𝐹𝑉)} = ((𝐹𝑈) ∪ (𝐹𝑉))
2723, 26eqtrdi 2794 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = ((𝐹𝑈) ∪ (𝐹𝑉)))
2827fveq2d 6778 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
2914, 17, 283eqtr3d 2786 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cun 3885  wss 3887  𝒫 cpw 4533  {cpr 4563   cuni 4839  cima 5592   Fn wfn 6428  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator