MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Structured version   Visualization version   GIF version

Theorem mrcun 17634
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcun ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mre1cl 17606 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
3 elpw2g 5303 . . . . . . 7 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
42, 3syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
54biimpar 477 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
653adant3 1132 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑈 ∈ 𝒫 𝑋)
7 elpw2g 5303 . . . . . . 7 (𝑋𝐶 → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
82, 7syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑉 ∈ 𝒫 𝑋𝑉𝑋))
98biimpar 477 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
1093adant2 1131 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝑉 ∈ 𝒫 𝑋)
116, 10prssd 4798 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} ⊆ 𝒫 𝑋)
12 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
1312mrcuni 17633 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈, 𝑉} ⊆ 𝒫 𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
141, 11, 13syl2anc 584 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹 (𝐹 “ {𝑈, 𝑉})))
15 uniprg 4899 . . . 4 ((𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
166, 10, 15syl2anc 584 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → {𝑈, 𝑉} = (𝑈𝑉))
1716fveq2d 6880 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 {𝑈, 𝑉}) = (𝐹‘(𝑈𝑉)))
1812mrcf 17621 . . . . . . . 8 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
1918ffnd 6707 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
20193ad2ant1 1133 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → 𝐹 Fn 𝒫 𝑋)
21 fnimapr 6962 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ∈ 𝒫 𝑋𝑉 ∈ 𝒫 𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2220, 6, 10, 21syl3anc 1373 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
2322unieqd 4896 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = {(𝐹𝑈), (𝐹𝑉)})
24 fvex 6889 . . . . 5 (𝐹𝑈) ∈ V
25 fvex 6889 . . . . 5 (𝐹𝑉) ∈ V
2624, 25unipr 4900 . . . 4 {(𝐹𝑈), (𝐹𝑉)} = ((𝐹𝑈) ∪ (𝐹𝑉))
2723, 26eqtrdi 2786 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 “ {𝑈, 𝑉}) = ((𝐹𝑈) ∪ (𝐹𝑉)))
2827fveq2d 6880 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹 (𝐹 “ {𝑈, 𝑉})) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
2914, 17, 283eqtr3d 2778 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈𝑉)) = (𝐹‘((𝐹𝑈) ∪ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  cun 3924  wss 3926  𝒫 cpw 4575  {cpr 4603   cuni 4883  cima 5657   Fn wfn 6526  cfv 6531  Moorecmre 17594  mrClscmrc 17595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-mre 17598  df-mrc 17599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator