Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unixp0 | Structured version Visualization version GIF version |
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
Ref | Expression |
---|---|
unixp0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4847 | . . 3 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∪ ∅) | |
2 | uni0 4866 | . . 3 ⊢ ∪ ∅ = ∅ | |
3 | 1, 2 | eqtrdi 2795 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∅) |
4 | n0 4277 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | |
5 | elxp3 5644 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
6 | elssuni 4868 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ⊆ ∪ (𝐴 × 𝐵)) | |
7 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
8 | vex 3426 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opnzi 5383 | . . . . . . . . 9 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
10 | ssn0 4331 | . . . . . . . . 9 ⊢ ((〈𝑥, 𝑦〉 ⊆ ∪ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ≠ ∅) → ∪ (𝐴 × 𝐵) ≠ ∅) | |
11 | 6, 9, 10 | sylancl 585 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
13 | 12 | exlimivv 1936 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
14 | 5, 13 | sylbi 216 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
15 | 14 | exlimiv 1934 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
16 | 4, 15 | sylbi 216 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ (𝐴 × 𝐵) ≠ ∅) |
17 | 16 | necon4i 2978 | . 2 ⊢ (∪ (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅) |
18 | 3, 17 | impbii 208 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 〈cop 4564 ∪ cuni 4836 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 |
This theorem is referenced by: rankxpsuc 9571 |
Copyright terms: Public domain | W3C validator |