![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unixp0 | Structured version Visualization version GIF version |
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
Ref | Expression |
---|---|
unixp0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4920 | . . 3 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∪ ∅) | |
2 | uni0 4940 | . . 3 ⊢ ∪ ∅ = ∅ | |
3 | 1, 2 | eqtrdi 2789 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∅) |
4 | n0 4347 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | |
5 | elxp3 5743 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))) | |
6 | elssuni 4942 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ⊆ ∪ (𝐴 × 𝐵)) | |
7 | vex 3479 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
8 | vex 3479 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opnzi 5475 | . . . . . . . . 9 ⊢ ⟨𝑥, 𝑦⟩ ≠ ∅ |
10 | ssn0 4401 | . . . . . . . . 9 ⊢ ((⟨𝑥, 𝑦⟩ ⊆ ∪ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ≠ ∅) → ∪ (𝐴 × 𝐵) ≠ ∅) | |
11 | 6, 9, 10 | sylancl 587 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
12 | 11 | adantl 483 | . . . . . . 7 ⊢ ((⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
13 | 12 | exlimivv 1936 | . . . . . 6 ⊢ (∃𝑥∃𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
14 | 5, 13 | sylbi 216 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
15 | 14 | exlimiv 1934 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
16 | 4, 15 | sylbi 216 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ (𝐴 × 𝐵) ≠ ∅) |
17 | 16 | necon4i 2977 | . 2 ⊢ (∪ (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅) |
18 | 3, 17 | impbii 208 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ⊆ wss 3949 ∅c0 4323 ⟨cop 4635 ∪ cuni 4909 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-opab 5212 df-xp 5683 |
This theorem is referenced by: rankxpsuc 9877 |
Copyright terms: Public domain | W3C validator |