MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp0 Structured version   Visualization version   GIF version

Theorem unixp0 6314
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
Assertion
Ref Expression
unixp0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4942 . . 3 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 4959 . . 3 ∅ = ∅
31, 2eqtrdi 2796 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
4 n0 4376 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
5 elxp3 5766 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 elssuni 4961 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵))
7 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
8 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
97, 8opnzi 5494 . . . . . . . . 9 𝑥, 𝑦⟩ ≠ ∅
10 ssn0 4427 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
116, 9, 10sylancl 585 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1211adantl 481 . . . . . . 7 ((⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1931 . . . . . 6 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 217 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1514exlimiv 1929 . . . 4 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
164, 15sylbi 217 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ≠ ∅)
1716necon4i 2982 . 2 ( (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
183, 17impbii 209 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wss 3976  c0 4352  cop 4654   cuni 4931   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-opab 5229  df-xp 5706
This theorem is referenced by:  rankxpsuc  9951
  Copyright terms: Public domain W3C validator