MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp0 Structured version   Visualization version   GIF version

Theorem unixp0 6289
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
Assertion
Ref Expression
unixp0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4920 . . 3 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 4939 . . 3 ∅ = ∅
31, 2eqtrdi 2781 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
4 n0 4346 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
5 elxp3 5744 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 elssuni 4941 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵))
7 vex 3465 . . . . . . . . . 10 𝑥 ∈ V
8 vex 3465 . . . . . . . . . 10 𝑦 ∈ V
97, 8opnzi 5476 . . . . . . . . 9 𝑥, 𝑦⟩ ≠ ∅
10 ssn0 4402 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
116, 9, 10sylancl 584 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1211adantl 480 . . . . . . 7 ((⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1927 . . . . . 6 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 216 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1514exlimiv 1925 . . . 4 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
164, 15sylbi 216 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ≠ ∅)
1716necon4i 2965 . 2 ( (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
183, 17impbii 208 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  wss 3944  c0 4322  cop 4636   cuni 4909   × cxp 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-opab 5212  df-xp 5684
This theorem is referenced by:  rankxpsuc  9907
  Copyright terms: Public domain W3C validator