MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp0 Structured version   Visualization version   GIF version

Theorem unixp0 6244
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.)
Assertion
Ref Expression
unixp0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4878 . . 3 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 4895 . . 3 ∅ = ∅
31, 2eqtrdi 2780 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
4 n0 4312 . . . 4 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
5 elxp3 5697 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 elssuni 4897 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵))
7 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
8 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
97, 8opnzi 5429 . . . . . . . . 9 𝑥, 𝑦⟩ ≠ ∅
10 ssn0 4363 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ⊆ (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
116, 9, 10sylancl 586 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1211adantl 481 . . . . . . 7 ((⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1932 . . . . . 6 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝑧 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 217 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
1514exlimiv 1930 . . . 4 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) ≠ ∅)
164, 15sylbi 217 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ≠ ∅)
1716necon4i 2960 . 2 ( (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
183, 17impbii 209 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 × 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3911  c0 4292  cop 4591   cuni 4867   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-opab 5165  df-xp 5637
This theorem is referenced by:  rankxpsuc  9811
  Copyright terms: Public domain W3C validator