| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unixp0 | Structured version Visualization version GIF version | ||
| Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixp0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4867 | . . 3 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∪ ∅) | |
| 2 | uni0 4884 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2782 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∅) |
| 4 | n0 4300 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | |
| 5 | elxp3 5680 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
| 6 | elssuni 4887 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ⊆ ∪ (𝐴 × 𝐵)) | |
| 7 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | opnzi 5412 | . . . . . . . . 9 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 10 | ssn0 4351 | . . . . . . . . 9 ⊢ ((〈𝑥, 𝑦〉 ⊆ ∪ (𝐴 × 𝐵) ∧ 〈𝑥, 𝑦〉 ≠ ∅) → ∪ (𝐴 × 𝐵) ≠ ∅) | |
| 11 | 6, 9, 10 | sylancl 586 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 13 | 12 | exlimivv 1933 | . . . . . 6 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝑧 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 14 | 5, 13 | sylbi 217 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 15 | 14 | exlimiv 1931 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 16 | 4, 15 | sylbi 217 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ (𝐴 × 𝐵) ≠ ∅) |
| 17 | 16 | necon4i 2963 | . 2 ⊢ (∪ (𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅) |
| 18 | 3, 17 | impbii 209 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 〈cop 4579 ∪ cuni 4856 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: rankxpsuc 9775 |
| Copyright terms: Public domain | W3C validator |