![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unixp | Structured version Visualization version GIF version |
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
unixp | ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5718 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | relfld 6306 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) |
4 | xpeq2 5721 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
5 | xp0 6189 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
7 | 6 | necon3i 2979 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅) |
8 | xpeq1 5714 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
9 | 0xp 5798 | . . . . 5 ⊢ (∅ × 𝐵) = ∅ | |
10 | 8, 9 | eqtrdi 2796 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
11 | 10 | necon3i 2979 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
12 | dmxp 5953 | . . . 4 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
13 | rnxp 6201 | . . . 4 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
14 | uneq12 4186 | . . . 4 ⊢ ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) | |
15 | 12, 13, 14 | syl2an 595 | . . 3 ⊢ ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
16 | 7, 11, 15 | syl2anc 583 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
17 | 3, 16 | eqtrid 2792 | 1 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∪ cun 3974 ∅c0 4352 ∪ cuni 4931 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: unixpid 6315 rankxpl 9944 rankxplim2 9949 rankxplim3 9950 rankxpsuc 9951 |
Copyright terms: Public domain | W3C validator |