| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unixp | Structured version Visualization version GIF version | ||
| Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixp | ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5685 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relfld 6277 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) |
| 4 | xpeq2 5688 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 5 | xp0 6160 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2785 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 7 | 6 | necon3i 2963 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅) |
| 8 | xpeq1 5681 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
| 9 | 0xp 5766 | . . . . 5 ⊢ (∅ × 𝐵) = ∅ | |
| 10 | 8, 9 | eqtrdi 2785 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
| 11 | 10 | necon3i 2963 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
| 12 | dmxp 5921 | . . . 4 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 13 | rnxp 6172 | . . . 4 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
| 14 | uneq12 4145 | . . . 4 ⊢ ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) | |
| 15 | 12, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
| 16 | 7, 11, 15 | syl2anc 584 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
| 17 | 3, 16 | eqtrid 2781 | 1 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2931 ∪ cun 3931 ∅c0 4315 ∪ cuni 4889 × cxp 5665 dom cdm 5667 ran crn 5668 Rel wrel 5672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 |
| This theorem is referenced by: unixpid 6286 rankxpl 9898 rankxplim2 9903 rankxplim3 9904 rankxpsuc 9905 |
| Copyright terms: Public domain | W3C validator |