Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unixp | Structured version Visualization version GIF version |
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
unixp | ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5544 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | relfld 6108 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) |
4 | xpeq2 5547 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
5 | xp0 5991 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2789 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
7 | 6 | necon3i 2966 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅) |
8 | xpeq1 5540 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
9 | 0xp 5621 | . . . . 5 ⊢ (∅ × 𝐵) = ∅ | |
10 | 8, 9 | eqtrdi 2789 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
11 | 10 | necon3i 2966 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
12 | dmxp 5773 | . . . 4 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
13 | rnxp 6003 | . . . 4 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
14 | uneq12 4049 | . . . 4 ⊢ ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) | |
15 | 12, 13, 14 | syl2an 599 | . . 3 ⊢ ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
16 | 7, 11, 15 | syl2anc 587 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
17 | 3, 16 | syl5eq 2785 | 1 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2934 ∪ cun 3842 ∅c0 4212 ∪ cuni 4797 × cxp 5524 dom cdm 5526 ran crn 5527 Rel wrel 5531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-xp 5532 df-rel 5533 df-cnv 5534 df-dm 5536 df-rn 5537 |
This theorem is referenced by: unixpid 6117 rankxpl 9378 rankxplim2 9383 rankxplim3 9384 rankxpsuc 9385 |
Copyright terms: Public domain | W3C validator |