MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp Structured version   Visualization version   GIF version

Theorem unixp 6278
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unixp ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))

Proof of Theorem unixp
StepHypRef Expression
1 relxp 5693 . . 3 Rel (𝐴 × 𝐵)
2 relfld 6271 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 xpeq2 5696 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 6154 . . . . 5 (𝐴 × ∅) = ∅
64, 5eqtrdi 2788 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
76necon3i 2973 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
8 xpeq1 5689 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
9 0xp 5772 . . . . 5 (∅ × 𝐵) = ∅
108, 9eqtrdi 2788 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1110necon3i 2973 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
12 dmxp 5926 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
13 rnxp 6166 . . . 4 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
14 uneq12 4157 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
1512, 13, 14syl2an 596 . . 3 ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
167, 11, 15syl2anc 584 . 2 ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
173, 16eqtrid 2784 1 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2940  cun 3945  c0 4321   cuni 4907   × cxp 5673  dom cdm 5675  ran crn 5676  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  unixpid  6280  rankxpl  9866  rankxplim2  9871  rankxplim3  9872  rankxpsuc  9873
  Copyright terms: Public domain W3C validator