MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp Structured version   Visualization version   GIF version

Theorem unixp 6185
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unixp ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))

Proof of Theorem unixp
StepHypRef Expression
1 relxp 5607 . . 3 Rel (𝐴 × 𝐵)
2 relfld 6178 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 xpeq2 5610 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 6061 . . . . 5 (𝐴 × ∅) = ∅
64, 5eqtrdi 2794 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
76necon3i 2976 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
8 xpeq1 5603 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
9 0xp 5685 . . . . 5 (∅ × 𝐵) = ∅
108, 9eqtrdi 2794 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1110necon3i 2976 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
12 dmxp 5838 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
13 rnxp 6073 . . . 4 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
14 uneq12 4092 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
1512, 13, 14syl2an 596 . . 3 ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
167, 11, 15syl2anc 584 . 2 ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
173, 16eqtrid 2790 1 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943  cun 3885  c0 4256   cuni 4839   × cxp 5587  dom cdm 5589  ran crn 5590  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  unixpid  6187  rankxpl  9633  rankxplim2  9638  rankxplim3  9639  rankxpsuc  9640
  Copyright terms: Public domain W3C validator