MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixp Structured version   Visualization version   GIF version

Theorem unixp 6286
Description: The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unixp ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))

Proof of Theorem unixp
StepHypRef Expression
1 relxp 5696 . . 3 Rel (𝐴 × 𝐵)
2 relfld 6279 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 xpeq2 5699 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 6162 . . . . 5 (𝐴 × ∅) = ∅
64, 5eqtrdi 2784 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
76necon3i 2970 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
8 xpeq1 5692 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
9 0xp 5776 . . . . 5 (∅ × 𝐵) = ∅
108, 9eqtrdi 2784 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1110necon3i 2970 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
12 dmxp 5931 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
13 rnxp 6174 . . . 4 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
14 uneq12 4157 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
1512, 13, 14syl2an 595 . . 3 ((𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
167, 11, 15syl2anc 583 . 2 ((𝐴 × 𝐵) ≠ ∅ → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
173, 16eqtrid 2780 1 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wne 2937  cun 3945  c0 4323   cuni 4908   × cxp 5676  dom cdm 5678  ran crn 5679  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689
This theorem is referenced by:  unixpid  6288  rankxpl  9898  rankxplim2  9903  rankxplim3  9904  rankxpsuc  9905
  Copyright terms: Public domain W3C validator