![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4279 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 3007 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ≠ wne 2986 ⊆ wss 3865 ∅c0 4217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-ne 2987 df-dif 3868 df-in 3872 df-ss 3880 df-nul 4218 |
This theorem is referenced by: unixp0 6016 frxp 7680 onfununi 7837 carddomi2 9252 fin23lem21 9614 wunex2 10013 vdwmc2 16148 gsumval2 17723 subgint 18061 subrgint 19251 hausnei2 21649 fbun 22136 fbfinnfr 22137 filuni 22181 isufil2 22204 ufileu 22215 filufint 22216 fmfnfm 22254 hausflim 22277 flimclslem 22280 fclsneii 22313 fclsbas 22317 fclsrest 22320 fclscf 22321 fclsfnflim 22323 flimfnfcls 22324 fclscmp 22326 ufilcmp 22328 isfcf 22330 fcfnei 22331 clssubg 22404 ustfilxp 22508 metustfbas 22854 restmetu 22867 reperflem 23113 metdseq0 23149 relcmpcmet 23608 bcthlem5 23618 minveclem4a 23720 dvlip 24277 wlkvtxiedg 27093 imadifxp 30037 bnj970 31831 frmin 32695 neibastop1 33318 neibastop2 33320 heibor1lem 34640 isnumbasabl 39212 dfacbasgrp 39214 ioossioobi 41356 islptre 41463 stoweidlem35 41884 stoweidlem39 41888 fourierdlem46 42001 nzerooringczr 43843 |
Copyright terms: Public domain | W3C validator |