Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4338 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 2965 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 |
This theorem is referenced by: unixp0 6183 frxp 7951 onfununi 8156 frmin 9490 frminOLD 9491 carddomi2 9712 fin23lem21 10079 wunex2 10478 vdwmc2 16661 gsumval2 18351 subgint 18760 subrgint 20027 hausnei2 22485 fbun 22972 fbfinnfr 22973 filuni 23017 isufil2 23040 ufileu 23051 filufint 23052 fmfnfm 23090 hausflim 23113 flimclslem 23116 fclsneii 23149 fclsbas 23153 fclsrest 23156 fclscf 23157 fclsfnflim 23159 flimfnfcls 23160 fclscmp 23162 ufilcmp 23164 isfcf 23166 fcfnei 23167 clssubg 23241 ustfilxp 23345 metustfbas 23694 restmetu 23707 reperflem 23962 metdseq0 23998 relcmpcmet 24463 bcthlem5 24473 minveclem4a 24575 dvlip 25138 wlkvtxiedg 27972 imadifxp 30919 bnj970 32906 neibastop1 34527 neibastop2 34529 heibor1lem 35946 isnumbasabl 40911 dfacbasgrp 40913 ioossioobi 43009 islptre 43114 stoweidlem35 43530 stoweidlem39 43534 fourierdlem46 43647 nzerooringczr 45582 |
Copyright terms: Public domain | W3C validator |