| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version | ||
| Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq0 4383 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 3 | 2 | necon3d 2954 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-dif 3934 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: unixp0 6277 frxp 8130 onfununi 8360 frmin 9768 carddomi2 9989 fin23lem21 10358 wunex2 10757 vdwmc2 17004 gsumval2 18669 subgint 19138 subrngint 20525 subrgint 20560 nzerooringczr 21446 hausnei2 23296 fbun 23783 fbfinnfr 23784 filuni 23828 isufil2 23851 ufileu 23862 filufint 23863 fmfnfm 23901 hausflim 23924 flimclslem 23927 fclsneii 23960 fclsbas 23964 fclsrest 23967 fclscf 23968 fclsfnflim 23970 flimfnfcls 23971 fclscmp 23973 ufilcmp 23975 isfcf 23977 fcfnei 23978 clssubg 24052 ustfilxp 24156 metustfbas 24501 restmetu 24514 reperflem 24763 metdseq0 24799 relcmpcmet 25275 bcthlem5 25285 minveclem4a 25387 dvlip 25955 wlkvtxiedg 29610 imadifxp 32587 constrextdg2lem 33787 bnj970 34983 neibastop1 36382 neibastop2 36384 heibor1lem 37838 isnumbasabl 43097 dfacbasgrp 43099 ioossioobi 45513 islptre 45615 stoweidlem35 46031 stoweidlem39 46035 fourierdlem46 46148 |
| Copyright terms: Public domain | W3C validator |