| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version | ||
| Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq0 4366 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 3 | 2 | necon3d 2946 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: unixp0 6256 frxp 8105 onfununi 8310 frmin 9702 carddomi2 9923 fin23lem21 10292 wunex2 10691 vdwmc2 16950 gsumval2 18613 subgint 19082 subrngint 20469 subrgint 20504 nzerooringczr 21390 hausnei2 23240 fbun 23727 fbfinnfr 23728 filuni 23772 isufil2 23795 ufileu 23806 filufint 23807 fmfnfm 23845 hausflim 23868 flimclslem 23871 fclsneii 23904 fclsbas 23908 fclsrest 23911 fclscf 23912 fclsfnflim 23914 flimfnfcls 23915 fclscmp 23917 ufilcmp 23919 isfcf 23921 fcfnei 23922 clssubg 23996 ustfilxp 24100 metustfbas 24445 restmetu 24458 reperflem 24707 metdseq0 24743 relcmpcmet 25218 bcthlem5 25228 minveclem4a 25330 dvlip 25898 wlkvtxiedg 29553 imadifxp 32530 constrextdg2lem 33738 bnj970 34937 neibastop1 36347 neibastop2 36349 heibor1lem 37803 isnumbasabl 43095 dfacbasgrp 43097 ioossioobi 45515 islptre 45617 stoweidlem35 46033 stoweidlem39 46037 fourierdlem46 46150 |
| Copyright terms: Public domain | W3C validator |