| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version | ||
| Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq0 4353 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 3 | 2 | necon3d 2949 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3905 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: unixp0 6230 frxp 8056 onfununi 8261 frmin 9639 carddomi2 9860 fin23lem21 10227 wunex2 10626 vdwmc2 16888 gsumval2 18591 subgint 19060 subrngint 20473 subrgint 20508 nzerooringczr 21415 hausnei2 23266 fbun 23753 fbfinnfr 23754 filuni 23798 isufil2 23821 ufileu 23832 filufint 23833 fmfnfm 23871 hausflim 23894 flimclslem 23897 fclsneii 23930 fclsbas 23934 fclsrest 23937 fclscf 23938 fclsfnflim 23940 flimfnfcls 23941 fclscmp 23943 ufilcmp 23945 isfcf 23947 fcfnei 23948 clssubg 24022 ustfilxp 24126 metustfbas 24470 restmetu 24483 reperflem 24732 metdseq0 24768 relcmpcmet 25243 bcthlem5 25253 minveclem4a 25355 dvlip 25923 wlkvtxiedg 29601 imadifxp 32576 constrextdg2lem 33756 bnj970 34954 neibastop1 36392 neibastop2 36394 heibor1lem 37848 isnumbasabl 43138 dfacbasgrp 43140 ioossioobi 45556 islptre 45658 stoweidlem35 46072 stoweidlem39 46076 fourierdlem46 46189 |
| Copyright terms: Public domain | W3C validator |