Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4344 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 2962 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ≠ wne 2941 ⊆ wss 3897 ∅c0 4267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4268 |
This theorem is referenced by: unixp0 6208 frxp 8011 onfununi 8219 frmin 9578 carddomi2 9799 fin23lem21 10168 wunex2 10567 vdwmc2 16750 gsumval2 18440 subgint 18848 subrgint 20118 hausnei2 22576 fbun 23063 fbfinnfr 23064 filuni 23108 isufil2 23131 ufileu 23142 filufint 23143 fmfnfm 23181 hausflim 23204 flimclslem 23207 fclsneii 23240 fclsbas 23244 fclsrest 23247 fclscf 23248 fclsfnflim 23250 flimfnfcls 23251 fclscmp 23253 ufilcmp 23255 isfcf 23257 fcfnei 23258 clssubg 23332 ustfilxp 23436 metustfbas 23785 restmetu 23798 reperflem 24053 metdseq0 24089 relcmpcmet 24554 bcthlem5 24564 minveclem4a 24666 dvlip 25229 wlkvtxiedg 28101 imadifxp 31048 bnj970 33032 neibastop1 34606 neibastop2 34608 heibor1lem 36023 isnumbasabl 41135 dfacbasgrp 41137 ioossioobi 43292 islptre 43397 stoweidlem35 43813 stoweidlem39 43817 fourierdlem46 43930 nzerooringczr 45882 |
Copyright terms: Public domain | W3C validator |