Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4339 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 414 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 2962 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 408 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ≠ wne 2941 ⊆ wss 3892 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 |
This theorem is referenced by: unixp0 6201 frxp 7998 onfununi 8203 frmin 9551 carddomi2 9772 fin23lem21 10141 wunex2 10540 vdwmc2 16725 gsumval2 18415 subgint 18824 subrgint 20091 hausnei2 22549 fbun 23036 fbfinnfr 23037 filuni 23081 isufil2 23104 ufileu 23115 filufint 23116 fmfnfm 23154 hausflim 23177 flimclslem 23180 fclsneii 23213 fclsbas 23217 fclsrest 23220 fclscf 23221 fclsfnflim 23223 flimfnfcls 23224 fclscmp 23226 ufilcmp 23228 isfcf 23230 fcfnei 23231 clssubg 23305 ustfilxp 23409 metustfbas 23758 restmetu 23771 reperflem 24026 metdseq0 24062 relcmpcmet 24527 bcthlem5 24537 minveclem4a 24639 dvlip 25202 wlkvtxiedg 28037 imadifxp 30985 bnj970 32972 neibastop1 34593 neibastop2 34595 heibor1lem 36011 isnumbasabl 40969 dfacbasgrp 40971 ioossioobi 43104 islptre 43209 stoweidlem35 43625 stoweidlem39 43629 fourierdlem46 43742 nzerooringczr 45688 |
Copyright terms: Public domain | W3C validator |