| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version | ||
| Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq0 4356 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 3 | 2 | necon3d 2946 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3908 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: unixp0 6235 frxp 8066 onfununi 8271 frmin 9664 carddomi2 9885 fin23lem21 10252 wunex2 10651 vdwmc2 16909 gsumval2 18578 subgint 19047 subrngint 20463 subrgint 20498 nzerooringczr 21405 hausnei2 23256 fbun 23743 fbfinnfr 23744 filuni 23788 isufil2 23811 ufileu 23822 filufint 23823 fmfnfm 23861 hausflim 23884 flimclslem 23887 fclsneii 23920 fclsbas 23924 fclsrest 23927 fclscf 23928 fclsfnflim 23930 flimfnfcls 23931 fclscmp 23933 ufilcmp 23935 isfcf 23937 fcfnei 23938 clssubg 24012 ustfilxp 24116 metustfbas 24461 restmetu 24474 reperflem 24723 metdseq0 24759 relcmpcmet 25234 bcthlem5 25244 minveclem4a 25346 dvlip 25914 wlkvtxiedg 29588 imadifxp 32563 constrextdg2lem 33714 bnj970 34913 neibastop1 36332 neibastop2 36334 heibor1lem 37788 isnumbasabl 43079 dfacbasgrp 43081 ioossioobi 45499 islptre 45601 stoweidlem35 46017 stoweidlem39 46021 fourierdlem46 46134 |
| Copyright terms: Public domain | W3C validator |