![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version |
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq0 4426 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
3 | 2 | necon3d 2967 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: unixp0 6314 frxp 8167 onfununi 8397 frmin 9818 carddomi2 10039 fin23lem21 10408 wunex2 10807 vdwmc2 17026 gsumval2 18724 subgint 19190 subrngint 20586 subrgint 20623 nzerooringczr 21514 hausnei2 23382 fbun 23869 fbfinnfr 23870 filuni 23914 isufil2 23937 ufileu 23948 filufint 23949 fmfnfm 23987 hausflim 24010 flimclslem 24013 fclsneii 24046 fclsbas 24050 fclsrest 24053 fclscf 24054 fclsfnflim 24056 flimfnfcls 24057 fclscmp 24059 ufilcmp 24061 isfcf 24063 fcfnei 24064 clssubg 24138 ustfilxp 24242 metustfbas 24591 restmetu 24604 reperflem 24859 metdseq0 24895 relcmpcmet 25371 bcthlem5 25381 minveclem4a 25483 dvlip 26052 wlkvtxiedg 29661 imadifxp 32623 bnj970 34923 neibastop1 36325 neibastop2 36327 heibor1lem 37769 isnumbasabl 43063 dfacbasgrp 43065 ioossioobi 45435 islptre 45540 stoweidlem35 45956 stoweidlem39 45960 fourierdlem46 46073 |
Copyright terms: Public domain | W3C validator |