| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0 | Structured version Visualization version GIF version | ||
| Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq0 4352 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 = ∅ → 𝐴 = ∅)) |
| 3 | 2 | necon3d 2950 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: unixp0 6235 frxp 8062 onfununi 8267 frmin 9649 carddomi2 9870 fin23lem21 10237 wunex2 10636 vdwmc2 16893 gsumval2 18596 subgint 19065 subrngint 20477 subrgint 20512 nzerooringczr 21419 hausnei2 23269 fbun 23756 fbfinnfr 23757 filuni 23801 isufil2 23824 ufileu 23835 filufint 23836 fmfnfm 23874 hausflim 23897 flimclslem 23900 fclsneii 23933 fclsbas 23937 fclsrest 23940 fclscf 23941 fclsfnflim 23943 flimfnfcls 23944 fclscmp 23946 ufilcmp 23948 isfcf 23950 fcfnei 23951 clssubg 24025 ustfilxp 24129 metustfbas 24473 restmetu 24486 reperflem 24735 metdseq0 24771 relcmpcmet 25246 bcthlem5 25256 minveclem4a 25358 dvlip 25926 wlkvtxiedg 29605 imadifxp 32583 constrextdg2lem 33782 bnj970 34980 neibastop1 36424 neibastop2 36426 heibor1lem 37869 isnumbasabl 43223 dfacbasgrp 43225 ioossioobi 45641 islptre 45743 stoweidlem35 46157 stoweidlem39 46161 fourierdlem46 46274 |
| Copyright terms: Public domain | W3C validator |