MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvcOLD Structured version   Visualization version   GIF version

Theorem isvcOLD 28362
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete version of iscvsp 23733. (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
isvcOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isvcOLD (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑧
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem isvcOLD
StepHypRef Expression
1 vcex 28361 . 2 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
2 elex 3459 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ V)
32adantr 484 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V)
4 cnex 10607 . . . . . . 7 ℂ ∈ V
5 ablogrpo 28330 . . . . . . . 8 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
6 isvcOLD.1 . . . . . . . . 9 𝑋 = ran 𝐺
7 rnexg 7595 . . . . . . . . 9 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
86, 7eqeltrid 2894 . . . . . . . 8 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
95, 8syl 17 . . . . . . 7 (𝐺 ∈ AbelOp → 𝑋 ∈ V)
10 xpexg 7453 . . . . . . 7 ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V)
114, 9, 10sylancr 590 . . . . . 6 (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V)
12 fex 6966 . . . . . 6 ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V)
1311, 12sylan2 595 . . . . 5 ((𝑆:(ℂ × 𝑋)⟶𝑋𝐺 ∈ AbelOp) → 𝑆 ∈ V)
1413ancoms 462 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V)
153, 14jca 515 . . 3 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
16153adant3 1129 . 2 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
176isvclem 28360 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
181, 16, 17pm5.21nii 383 1 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cop 4531   × cxp 5517  ran crn 5520  wf 6320  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  GrpOpcgr 28272  AbelOpcablo 28327  CVecOLDcvc 28341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-ablo 28328  df-vc 28342
This theorem is referenced by:  isvciOLD  28363
  Copyright terms: Public domain W3C validator