![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isvcOLD | Structured version Visualization version GIF version |
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete version of iscvsp 25175. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isvcOLD | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcex 30607 | . 2 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
2 | elex 3499 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ V) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V) |
4 | cnex 11234 | . . . . . . 7 ⊢ ℂ ∈ V | |
5 | ablogrpo 30576 | . . . . . . . 8 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
6 | isvcOLD.1 | . . . . . . . . 9 ⊢ 𝑋 = ran 𝐺 | |
7 | rnexg 7925 | . . . . . . . . 9 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
8 | 6, 7 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
9 | 5, 8 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ AbelOp → 𝑋 ∈ V) |
10 | xpexg 7769 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V) | |
11 | 4, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V) |
12 | fex 7246 | . . . . . 6 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V) | |
13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ 𝐺 ∈ AbelOp) → 𝑆 ∈ V) |
14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V) |
15 | 3, 14 | jca 511 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
16 | 15 | 3adant3 1131 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
17 | 6 | isvclem 30606 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
18 | 1, 16, 17 | pm5.21nii 378 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 〈cop 4637 × cxp 5687 ran crn 5690 ⟶wf 6559 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 GrpOpcgr 30518 AbelOpcablo 30573 CVecOLDcvc 30587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-ablo 30574 df-vc 30588 |
This theorem is referenced by: isvciOLD 30609 |
Copyright terms: Public domain | W3C validator |