Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isvcOLD | Structured version Visualization version GIF version |
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete version of iscvsp 24291. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isvcOLD | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcex 28940 | . 2 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
2 | elex 3450 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ V) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V) |
4 | cnex 10952 | . . . . . . 7 ⊢ ℂ ∈ V | |
5 | ablogrpo 28909 | . . . . . . . 8 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
6 | isvcOLD.1 | . . . . . . . . 9 ⊢ 𝑋 = ran 𝐺 | |
7 | rnexg 7751 | . . . . . . . . 9 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
8 | 6, 7 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
9 | 5, 8 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ AbelOp → 𝑋 ∈ V) |
10 | xpexg 7600 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V) | |
11 | 4, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V) |
12 | fex 7102 | . . . . . 6 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V) | |
13 | 11, 12 | sylan2 593 | . . . . 5 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ 𝐺 ∈ AbelOp) → 𝑆 ∈ V) |
14 | 13 | ancoms 459 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V) |
15 | 3, 14 | jca 512 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
16 | 15 | 3adant3 1131 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
17 | 6 | isvclem 28939 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
18 | 1, 16, 17 | pm5.21nii 380 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 〈cop 4567 × cxp 5587 ran crn 5590 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 · cmul 10876 GrpOpcgr 28851 AbelOpcablo 28906 CVecOLDcvc 28920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-ablo 28907 df-vc 28921 |
This theorem is referenced by: isvciOLD 28942 |
Copyright terms: Public domain | W3C validator |