MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvcOLD Structured version   Visualization version   GIF version

Theorem isvcOLD 30508
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete version of iscvsp 25028. (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
isvcOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isvcOLD (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑧
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem isvcOLD
StepHypRef Expression
1 vcex 30507 . 2 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
2 elex 3468 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ V)
32adantr 480 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V)
4 cnex 11149 . . . . . . 7 ℂ ∈ V
5 ablogrpo 30476 . . . . . . . 8 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
6 isvcOLD.1 . . . . . . . . 9 𝑋 = ran 𝐺
7 rnexg 7878 . . . . . . . . 9 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
86, 7eqeltrid 2832 . . . . . . . 8 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
95, 8syl 17 . . . . . . 7 (𝐺 ∈ AbelOp → 𝑋 ∈ V)
10 xpexg 7726 . . . . . . 7 ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V)
114, 9, 10sylancr 587 . . . . . 6 (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V)
12 fex 7200 . . . . . 6 ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V)
1311, 12sylan2 593 . . . . 5 ((𝑆:(ℂ × 𝑋)⟶𝑋𝐺 ∈ AbelOp) → 𝑆 ∈ V)
1413ancoms 458 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V)
153, 14jca 511 . . 3 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
16153adant3 1132 . 2 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
176isvclem 30506 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
181, 16, 17pm5.21nii 378 1 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cop 4595   × cxp 5636  ran crn 5639  wf 6507  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  GrpOpcgr 30418  AbelOpcablo 30473  CVecOLDcvc 30487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ablo 30474  df-vc 30488
This theorem is referenced by:  isvciOLD  30509
  Copyright terms: Public domain W3C validator