![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isvcOLD | Structured version Visualization version GIF version |
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete version of iscvsp 25180. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isvcOLD | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcex 30610 | . 2 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
2 | elex 3509 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ V) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V) |
4 | cnex 11265 | . . . . . . 7 ⊢ ℂ ∈ V | |
5 | ablogrpo 30579 | . . . . . . . 8 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
6 | isvcOLD.1 | . . . . . . . . 9 ⊢ 𝑋 = ran 𝐺 | |
7 | rnexg 7942 | . . . . . . . . 9 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
8 | 6, 7 | eqeltrid 2848 | . . . . . . . 8 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
9 | 5, 8 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ AbelOp → 𝑋 ∈ V) |
10 | xpexg 7785 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V) | |
11 | 4, 9, 10 | sylancr 586 | . . . . . 6 ⊢ (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V) |
12 | fex 7263 | . . . . . 6 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V) | |
13 | 11, 12 | sylan2 592 | . . . . 5 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ 𝐺 ∈ AbelOp) → 𝑆 ∈ V) |
14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V) |
15 | 3, 14 | jca 511 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
17 | 6 | isvclem 30609 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
18 | 1, 16, 17 | pm5.21nii 378 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 〈cop 4654 × cxp 5698 ran crn 5701 ⟶wf 6569 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 GrpOpcgr 30521 AbelOpcablo 30576 CVecOLDcvc 30590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-ablo 30577 df-vc 30591 |
This theorem is referenced by: isvciOLD 30612 |
Copyright terms: Public domain | W3C validator |