|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isnv | Structured version Visualization version GIF version | ||
| Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| isnv.1 | ⊢ 𝑋 = ran 𝐺 | 
| isnv.2 | ⊢ 𝑍 = (GId‘𝐺) | 
| Ref | Expression | 
|---|---|
| isnv | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nvex 30631 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | |
| 2 | vcex 30598 | . . . . 5 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | 
| 4 | isnv.1 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 2 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝐺 ∈ V) | 
| 6 | rnexg 7925 | . . . . . . . 8 ⊢ (𝐺 ∈ V → ran 𝐺 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → ran 𝐺 ∈ V) | 
| 8 | 4, 7 | eqeltrid 2844 | . . . . . 6 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝑋 ∈ V) | 
| 9 | fex 7247 | . . . . . 6 ⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑁:𝑋⟶ℝ ∧ 〈𝐺, 𝑆〉 ∈ CVecOLD) → 𝑁 ∈ V) | 
| 11 | 10 | ancoms 458 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → 𝑁 ∈ V) | 
| 12 | df-3an 1088 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
| 13 | 3, 11, 12 | sylanbrc 583 | . . 3 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | 
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | 
| 15 | isnv.2 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 16 | 4, 15 | isnvlem 30630 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) | 
| 17 | 1, 14, 16 | pm5.21nii 378 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 〈cop 4631 class class class wbr 5142 ran crn 5685 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 + caddc 11159 · cmul 11161 ≤ cle 11297 abscabs 15274 GIdcgi 30510 CVecOLDcvc 30578 NrmCVeccnv 30604 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-vc 30579 df-nv 30612 | 
| This theorem is referenced by: isnvi 30633 nvi 30634 | 
| Copyright terms: Public domain | W3C validator |