MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Structured version   Visualization version   GIF version

Theorem isnv 28875
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1 𝑋 = ran 𝐺
isnv.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isnv (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 28874 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
2 vcex 28841 . . . . 5 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
32adantr 480 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 isnv.1 . . . . . . 7 𝑋 = ran 𝐺
52simpld 494 . . . . . . . 8 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝐺 ∈ V)
6 rnexg 7725 . . . . . . . 8 (𝐺 ∈ V → ran 𝐺 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → ran 𝐺 ∈ V)
84, 7eqeltrid 2843 . . . . . 6 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑋 ∈ V)
9 fex 7084 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V)
108, 9sylan2 592 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ ⟨𝐺, 𝑆⟩ ∈ CVecOLD) → 𝑁 ∈ V)
1110ancoms 458 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → 𝑁 ∈ V)
12 df-3an 1087 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
133, 11, 12sylanbrc 582 . . 3 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
14133adant3 1130 . 2 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
15 isnv.2 . . 3 𝑍 = (GId‘𝐺)
164, 15isnvlem 28873 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
171, 14, 16pm5.21nii 379 1 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cop 4564   class class class wbr 5070  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  cle 10941  abscabs 14873  GIdcgi 28753  CVecOLDcvc 28821  NrmCVeccnv 28847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-vc 28822  df-nv 28855
This theorem is referenced by:  isnvi  28876  nvi  28877
  Copyright terms: Public domain W3C validator