MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Structured version   Visualization version   GIF version

Theorem isnv 28974
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1 𝑋 = ran 𝐺
isnv.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isnv (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 28973 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
2 vcex 28940 . . . . 5 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
32adantr 481 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 isnv.1 . . . . . . 7 𝑋 = ran 𝐺
52simpld 495 . . . . . . . 8 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝐺 ∈ V)
6 rnexg 7751 . . . . . . . 8 (𝐺 ∈ V → ran 𝐺 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → ran 𝐺 ∈ V)
84, 7eqeltrid 2843 . . . . . 6 (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑋 ∈ V)
9 fex 7102 . . . . . 6 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V)
108, 9sylan2 593 . . . . 5 ((𝑁:𝑋⟶ℝ ∧ ⟨𝐺, 𝑆⟩ ∈ CVecOLD) → 𝑁 ∈ V)
1110ancoms 459 . . . 4 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → 𝑁 ∈ V)
12 df-3an 1088 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
133, 11, 12sylanbrc 583 . . 3 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
14133adant3 1131 . 2 ((⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
15 isnv.2 . . 3 𝑍 = (GId‘𝐺)
164, 15isnvlem 28972 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
171, 14, 16pm5.21nii 380 1 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cop 4567   class class class wbr 5074  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cle 11010  abscabs 14945  GIdcgi 28852  CVecOLDcvc 28920  NrmCVeccnv 28946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-vc 28921  df-nv 28954
This theorem is referenced by:  isnvi  28975  nvi  28976
  Copyright terms: Public domain W3C validator