MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Structured version   Visualization version   GIF version

Theorem isnv 30132
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1 𝑋 = ran 𝐺
isnv.2 𝑍 = (GIdβ€˜πΊ)
Assertion
Ref Expression
isnv (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec ↔ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝑦,𝐺   π‘₯,𝑁,𝑦   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝑍(π‘₯,𝑦)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 30131 . 2 (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec β†’ (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
2 vcex 30098 . . . . 5 (⟨𝐺, π‘†βŸ© ∈ CVecOLD β†’ (𝐺 ∈ V ∧ 𝑆 ∈ V))
32adantr 479 . . . 4 ((⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„) β†’ (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 isnv.1 . . . . . . 7 𝑋 = ran 𝐺
52simpld 493 . . . . . . . 8 (⟨𝐺, π‘†βŸ© ∈ CVecOLD β†’ 𝐺 ∈ V)
6 rnexg 7897 . . . . . . . 8 (𝐺 ∈ V β†’ ran 𝐺 ∈ V)
75, 6syl 17 . . . . . . 7 (⟨𝐺, π‘†βŸ© ∈ CVecOLD β†’ ran 𝐺 ∈ V)
84, 7eqeltrid 2835 . . . . . 6 (⟨𝐺, π‘†βŸ© ∈ CVecOLD β†’ 𝑋 ∈ V)
9 fex 7229 . . . . . 6 ((𝑁:π‘‹βŸΆβ„ ∧ 𝑋 ∈ V) β†’ 𝑁 ∈ V)
108, 9sylan2 591 . . . . 5 ((𝑁:π‘‹βŸΆβ„ ∧ ⟨𝐺, π‘†βŸ© ∈ CVecOLD) β†’ 𝑁 ∈ V)
1110ancoms 457 . . . 4 ((⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„) β†’ 𝑁 ∈ V)
12 df-3an 1087 . . . 4 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
133, 11, 12sylanbrc 581 . . 3 ((⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„) β†’ (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
14133adant3 1130 . 2 ((⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))) β†’ (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
15 isnv.2 . . 3 𝑍 = (GIdβ€˜πΊ)
164, 15isnvlem 30130 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) β†’ (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec ↔ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))))
171, 14, 16pm5.21nii 377 1 (⟨⟨𝐺, π‘†βŸ©, π‘βŸ© ∈ NrmCVec ↔ (⟨𝐺, π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = 𝑍) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯𝐺𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  Vcvv 3472  βŸ¨cop 4633   class class class wbr 5147  ran crn 5676  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  β„cr 11111  0cc0 11112   + caddc 11115   Β· cmul 11117   ≀ cle 11253  abscabs 15185  GIdcgi 30010  CVecOLDcvc 30078  NrmCVeccnv 30104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-vc 30079  df-nv 30112
This theorem is referenced by:  isnvi  30133  nvi  30134
  Copyright terms: Public domain W3C validator