| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnv | Structured version Visualization version GIF version | ||
| Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isnv.1 | ⊢ 𝑋 = ran 𝐺 |
| isnv.2 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| isnv | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvex 30597 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | |
| 2 | vcex 30564 | . . . . 5 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
| 4 | isnv.1 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 2 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝐺 ∈ V) |
| 6 | rnexg 7903 | . . . . . . . 8 ⊢ (𝐺 ∈ V → ran 𝐺 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → ran 𝐺 ∈ V) |
| 8 | 4, 7 | eqeltrid 2839 | . . . . . 6 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → 𝑋 ∈ V) |
| 9 | fex 7223 | . . . . . 6 ⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V) → 𝑁 ∈ V) | |
| 10 | 8, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑁:𝑋⟶ℝ ∧ 〈𝐺, 𝑆〉 ∈ CVecOLD) → 𝑁 ∈ V) |
| 11 | 10 | ancoms 458 | . . . 4 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → 𝑁 ∈ V) |
| 12 | df-3an 1088 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
| 13 | 3, 11, 12 | sylanbrc 583 | . . 3 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
| 15 | isnv.2 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 16 | 4, 15 | isnvlem 30596 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) |
| 17 | 1, 14, 16 | pm5.21nii 378 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 〈cop 4612 class class class wbr 5124 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 + caddc 11137 · cmul 11139 ≤ cle 11275 abscabs 15258 GIdcgi 30476 CVecOLDcvc 30544 NrmCVeccnv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-vc 30545 df-nv 30578 |
| This theorem is referenced by: isnvi 30599 nvi 30600 |
| Copyright terms: Public domain | W3C validator |