![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq3 | Structured version Visualization version GIF version |
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
wsuceq3 | ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2725 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | wsuceq123 35538 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1447 | 1 ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 wsuccwsuc 35534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-sup 9467 df-inf 9468 df-wsuc 35536 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |