| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuceq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| wsuceq3 | ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2737 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | wsuceq123 35815 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 wsuccwsuc 35811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-sup 9482 df-inf 9483 df-wsuc 35813 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |