Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq3 Structured version   Visualization version   GIF version

Theorem wsuceq3 33811
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
wsuceq3 (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌))

Proof of Theorem wsuceq3
StepHypRef Expression
1 eqid 2738 . 2 𝑅 = 𝑅
2 eqid 2738 . 2 𝐴 = 𝐴
3 wsuceq123 33808 . 2 ((𝑅 = 𝑅𝐴 = 𝐴𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌))
41, 2, 3mp3an12 1450 1 (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wsuccwsuc 33804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-sup 9201  df-inf 9202  df-wsuc 33806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator