Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpcvgval Structured version   Visualization version   GIF version

Theorem esumpcvgval 33565
Description: The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypotheses
Ref Expression
esumpcvgval.1 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ (0[,)+∞))
esumpcvgval.2 (π‘˜ = 𝑙 β†’ 𝐴 = 𝐡)
esumpcvgval.3 (πœ‘ β†’ (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
esumpcvgval (πœ‘ β†’ Ξ£*π‘˜ ∈ ℕ𝐴 = Ξ£π‘˜ ∈ β„• 𝐴)
Distinct variable groups:   π‘˜,𝑙,𝑛   𝐴,𝑙,𝑛   𝐡,π‘˜,𝑛   πœ‘,π‘˜,𝑛
Allowed substitution hints:   πœ‘(𝑙)   𝐴(π‘˜)   𝐡(𝑙)

Proof of Theorem esumpcvgval
Dummy variables 𝑠 π‘₯ 𝑦 𝑧 𝑏 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13117 . . . 4 < Or ℝ*
21a1i 11 . . 3 (πœ‘ β†’ < Or ℝ*)
3 nnuz 12862 . . . . 5 β„• = (β„€β‰₯β€˜1)
4 1zzd 12590 . . . . 5 (πœ‘ β†’ 1 ∈ β„€)
5 esumpcvgval.1 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ (0[,)+∞))
6 esumpcvgval.2 . . . . . . . . . . . 12 (π‘˜ = 𝑙 β†’ 𝐴 = 𝐡)
7 eqcom 2731 . . . . . . . . . . . 12 (π‘˜ = 𝑙 ↔ 𝑙 = π‘˜)
8 eqcom 2731 . . . . . . . . . . . 12 (𝐴 = 𝐡 ↔ 𝐡 = 𝐴)
96, 7, 83imtr3i 291 . . . . . . . . . . 11 (𝑙 = π‘˜ β†’ 𝐡 = 𝐴)
109cbvmptv 5251 . . . . . . . . . 10 (𝑙 ∈ β„• ↦ 𝐡) = (π‘˜ ∈ β„• ↦ 𝐴)
115, 10fmptd 7105 . . . . . . . . 9 (πœ‘ β†’ (𝑙 ∈ β„• ↦ 𝐡):β„•βŸΆ(0[,)+∞))
1211ffvelcdmda 7076 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ (0[,)+∞))
13 elrege0 13428 . . . . . . . . 9 (((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ (0[,)+∞) ↔ (((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ ℝ ∧ 0 ≀ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯)))
1413simplbi 497 . . . . . . . 8 (((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ (0[,)+∞) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ ℝ)
1512, 14syl 17 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘₯) ∈ ℝ)
163, 4, 15serfre 13994 . . . . . 6 (πœ‘ β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)):β„•βŸΆβ„)
1711adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (𝑙 ∈ β„• ↦ 𝐡):β„•βŸΆ(0[,)+∞))
18 simpr 484 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•)
1918peano2nnd 12226 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (𝑛 + 1) ∈ β„•)
2017, 19ffvelcdmd 7077 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ (0[,)+∞))
21 elrege0 13428 . . . . . . . . . 10 (((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ (0[,)+∞) ↔ (((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ ℝ ∧ 0 ≀ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1))))
2221simprbi 496 . . . . . . . . 9 (((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ (0[,)+∞) β†’ 0 ≀ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)))
2320, 22syl 17 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 0 ≀ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)))
2416ffvelcdmda 7076 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ∈ ℝ)
2521simplbi 497 . . . . . . . . . 10 (((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ (0[,)+∞) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ ℝ)
2620, 25syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ∈ ℝ)
2724, 26addge01d 11799 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (0 ≀ ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)) ↔ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) + ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1)))))
2823, 27mpbid 231 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) + ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1))))
2918, 3eleqtrdi 2835 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ (β„€β‰₯β€˜1))
30 seqp1 13978 . . . . . . . 8 (𝑛 ∈ (β„€β‰₯β€˜1) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) + ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1))))
3129, 30syl 17 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) + ((𝑙 ∈ β„• ↦ 𝐡)β€˜(𝑛 + 1))))
3228, 31breqtrrd 5166 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜(𝑛 + 1)))
33 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ π‘˜ ∈ β„•)
3410fvmpt2 6999 . . . . . . . . 9 ((π‘˜ ∈ β„• ∧ 𝐴 ∈ (0[,)+∞)) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘˜) = 𝐴)
3533, 5, 34syl2anc 583 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘˜) = 𝐴)
36 rge0ssre 13430 . . . . . . . . 9 (0[,)+∞) βŠ† ℝ
3736, 5sselid 3972 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ ℝ)
3816feqmptd 6950 . . . . . . . . . 10 (πœ‘ β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = (𝑛 ∈ β„• ↦ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)))
39 simpll 764 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ (1...𝑛)) β†’ πœ‘)
40 elfznn 13527 . . . . . . . . . . . . . . 15 (π‘˜ ∈ (1...𝑛) β†’ π‘˜ ∈ β„•)
4140adantl 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ (1...𝑛)) β†’ π‘˜ ∈ β„•)
4239, 41, 35syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ (1...𝑛)) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘˜) = 𝐴)
4337recnd 11239 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ β„‚)
4439, 41, 43syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ (1...𝑛)) β†’ 𝐴 ∈ β„‚)
4542, 29, 44fsumser 15673 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ Ξ£π‘˜ ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
4645eqcomd 2730 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) = Ξ£π‘˜ ∈ (1...𝑛)𝐴)
4746mpteq2dva 5238 . . . . . . . . . 10 (πœ‘ β†’ (𝑛 ∈ β„• ↦ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) = (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ (1...𝑛)𝐴))
4838, 47eqtr2d 2765 . . . . . . . . 9 (πœ‘ β†’ (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ (1...𝑛)𝐴) = seq1( + , (𝑙 ∈ β„• ↦ 𝐡)))
49 esumpcvgval.3 . . . . . . . . 9 (πœ‘ β†’ (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
5048, 49eqeltrrd 2826 . . . . . . . 8 (πœ‘ β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ∈ dom ⇝ )
513, 4, 35, 37, 50isumrecl 15708 . . . . . . 7 (πœ‘ β†’ Ξ£π‘˜ ∈ β„• 𝐴 ∈ ℝ)
52 1zzd 12590 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 1 ∈ β„€)
53 fzfid 13935 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (1...𝑛) ∈ Fin)
54 fzssuz 13539 . . . . . . . . . . . 12 (1...𝑛) βŠ† (β„€β‰₯β€˜1)
5554, 3sseqtrri 4011 . . . . . . . . . . 11 (1...𝑛) βŠ† β„•
5655a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (1...𝑛) βŠ† β„•)
5735adantlr 712 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘˜) = 𝐴)
5837adantlr 712 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ ℝ)
595adantlr 712 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ (0[,)+∞))
60 elrege0 13428 . . . . . . . . . . . 12 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴))
6160simprbi 496 . . . . . . . . . . 11 (𝐴 ∈ (0[,)+∞) β†’ 0 ≀ 𝐴)
6259, 61syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ β„•) β†’ 0 ≀ 𝐴)
6350adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ∈ dom ⇝ )
643, 52, 53, 56, 57, 58, 62, 63isumless 15788 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ Ξ£π‘˜ ∈ (1...𝑛)𝐴 ≀ Ξ£π‘˜ ∈ β„• 𝐴)
6545, 64eqbrtrrd 5162 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ Ξ£π‘˜ ∈ β„• 𝐴)
6665ralrimiva 3138 . . . . . . 7 (πœ‘ β†’ βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ Ξ£π‘˜ ∈ β„• 𝐴)
67 brralrspcev 5198 . . . . . . 7 ((Ξ£π‘˜ ∈ β„• 𝐴 ∈ ℝ ∧ βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ Ξ£π‘˜ ∈ β„• 𝐴) β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠)
6851, 66, 67syl2anc 583 . . . . . 6 (πœ‘ β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠)
693, 4, 16, 32, 68climsup 15613 . . . . 5 (πœ‘ β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ⇝ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
703, 4, 69, 24climrecl 15524 . . . 4 (πœ‘ β†’ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ)
7170rexrd 11261 . . 3 (πœ‘ β†’ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ*)
72 eqid 2724 . . . . . . 7 (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) = (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)
73 sumex 15631 . . . . . . 7 Ξ£π‘˜ ∈ 𝑏 𝐴 ∈ V
7472, 73elrnmpti 5949 . . . . . 6 (π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) ↔ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴)
75 ssnnssfz 32467 . . . . . . . . . 10 (𝑏 ∈ (𝒫 β„• ∩ Fin) β†’ βˆƒπ‘š ∈ β„• 𝑏 βŠ† (1...π‘š))
76 fzfid 13935 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑏 βŠ† (1...π‘š)) β†’ (1...π‘š) ∈ Fin)
77 elfznn 13527 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ (1...π‘š) β†’ π‘˜ ∈ β„•)
7877, 5sylan2 592 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ (0[,)+∞))
7960simplbi 497 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0[,)+∞) β†’ 𝐴 ∈ ℝ)
8078, 79syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ ℝ)
8180adantlr 712 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑏 βŠ† (1...π‘š)) ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ ℝ)
8278, 61syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ (1...π‘š)) β†’ 0 ≀ 𝐴)
8382adantlr 712 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑏 βŠ† (1...π‘š)) ∧ π‘˜ ∈ (1...π‘š)) β†’ 0 ≀ 𝐴)
84 simpr 484 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑏 βŠ† (1...π‘š)) β†’ 𝑏 βŠ† (1...π‘š))
8576, 81, 83, 84fsumless 15739 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 βŠ† (1...π‘š)) β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
8685ex 412 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑏 βŠ† (1...π‘š) β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
8786reximdv 3162 . . . . . . . . . . 11 (πœ‘ β†’ (βˆƒπ‘š ∈ β„• 𝑏 βŠ† (1...π‘š) β†’ βˆƒπ‘š ∈ β„• Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
8887imp 406 . . . . . . . . . 10 ((πœ‘ ∧ βˆƒπ‘š ∈ β„• 𝑏 βŠ† (1...π‘š)) β†’ βˆƒπ‘š ∈ β„• Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
8975, 88sylan2 592 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ βˆƒπ‘š ∈ β„• Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
90 breq1 5141 . . . . . . . . . 10 (π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴 β†’ (π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ↔ Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
9190rexbidv 3170 . . . . . . . . 9 (π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴 β†’ (βˆƒπ‘š ∈ β„• π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ↔ βˆƒπ‘š ∈ β„• Ξ£π‘˜ ∈ 𝑏 𝐴 ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
9289, 91syl5ibrcom 246 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ (π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴 β†’ βˆƒπ‘š ∈ β„• π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
9392rexlimdva 3147 . . . . . . 7 (πœ‘ β†’ (βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴 β†’ βˆƒπ‘š ∈ β„• π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴))
9493imp 406 . . . . . 6 ((πœ‘ ∧ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ βˆƒπ‘š ∈ β„• π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
9574, 94sylan2b 593 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ βˆƒπ‘š ∈ β„• π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
96 simpr 484 . . . . . . . . . 10 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴)
97 inss2 4221 . . . . . . . . . . . . 13 (𝒫 β„• ∩ Fin) βŠ† Fin
98 simpr 484 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ 𝑏 ∈ (𝒫 β„• ∩ Fin))
9997, 98sselid 3972 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ 𝑏 ∈ Fin)
100 simpll 764 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ πœ‘)
101 inss1 4220 . . . . . . . . . . . . . . . . 17 (𝒫 β„• ∩ Fin) βŠ† 𝒫 β„•
102 simplr 766 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝑏 ∈ (𝒫 β„• ∩ Fin))
103101, 102sselid 3972 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝑏 ∈ 𝒫 β„•)
104103elpwid 4603 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝑏 βŠ† β„•)
105 simpr 484 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ π‘˜ ∈ 𝑏)
106104, 105sseldd 3975 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ π‘˜ ∈ β„•)
107100, 106, 5syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝐴 ∈ (0[,)+∞))
108107, 79syl 17 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝐴 ∈ ℝ)
10999, 108fsumrecl 15677 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 ∈ ℝ)
110109adantr 480 . . . . . . . . . 10 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 ∈ ℝ)
11196, 110eqeltrd 2825 . . . . . . . . 9 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ π‘₯ ∈ ℝ)
112111r19.29an 3150 . . . . . . . 8 ((πœ‘ ∧ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)π‘₯ = Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ π‘₯ ∈ ℝ)
11374, 112sylan2b 593 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ π‘₯ ∈ ℝ)
114113adantr 480 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ π‘₯ ∈ ℝ)
115 fzfid 13935 . . . . . . . 8 (πœ‘ β†’ (1...π‘š) ∈ Fin)
116115, 80fsumrecl 15677 . . . . . . 7 (πœ‘ β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ℝ)
117116ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ℝ)
11870ad2antrr 723 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ)
119 simprr 770 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)
12016frnd 6715 . . . . . . . 8 (πœ‘ β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ)
121120ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ)
122 1nn 12220 . . . . . . . . . 10 1 ∈ β„•
123122ne0ii 4329 . . . . . . . . 9 β„• β‰  βˆ…
124 dm0rn0 5914 . . . . . . . . . . 11 (dom seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = βˆ… ↔ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = βˆ…)
12516fdmd 6718 . . . . . . . . . . . 12 (πœ‘ β†’ dom seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = β„•)
126125eqeq1d 2726 . . . . . . . . . . 11 (πœ‘ β†’ (dom seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = βˆ… ↔ β„• = βˆ…))
127124, 126bitr3id 285 . . . . . . . . . 10 (πœ‘ β†’ (ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = βˆ… ↔ β„• = βˆ…))
128127necon3bid 2977 . . . . . . . . 9 (πœ‘ β†’ (ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ… ↔ β„• β‰  βˆ…))
129123, 128mpbiri 258 . . . . . . . 8 (πœ‘ β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ…)
130129ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ…)
131 1z 12589 . . . . . . . . . . . . . . . 16 1 ∈ β„€
132 seqfn 13975 . . . . . . . . . . . . . . . 16 (1 ∈ β„€ β†’ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn (β„€β‰₯β€˜1))
133131, 132ax-mp 5 . . . . . . . . . . . . . . 15 seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn (β„€β‰₯β€˜1)
1343fneq2i 6637 . . . . . . . . . . . . . . 15 (seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn β„• ↔ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn (β„€β‰₯β€˜1))
135133, 134mpbir 230 . . . . . . . . . . . . . 14 seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn β„•
136 dffn5 6940 . . . . . . . . . . . . . 14 (seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) Fn β„• ↔ seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = (𝑛 ∈ β„• ↦ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)))
137135, 136mpbi 229 . . . . . . . . . . . . 13 seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) = (𝑛 ∈ β„• ↦ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
138 fvex 6894 . . . . . . . . . . . . 13 (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ∈ V
139137, 138elrnmpti 5949 . . . . . . . . . . . 12 (𝑧 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ↔ βˆƒπ‘› ∈ β„• 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
140 r19.29 3106 . . . . . . . . . . . . 13 ((βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ βˆƒπ‘› ∈ β„• 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ βˆƒπ‘› ∈ β„• ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)))
141 breq1 5141 . . . . . . . . . . . . . . 15 (𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) β†’ (𝑧 ≀ 𝑠 ↔ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠))
142141biimparc 479 . . . . . . . . . . . . . 14 (((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ 𝑧 ≀ 𝑠)
143142rexlimivw 3143 . . . . . . . . . . . . 13 (βˆƒπ‘› ∈ β„• ((seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ 𝑧 ≀ 𝑠)
144140, 143syl 17 . . . . . . . . . . . 12 ((βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ βˆƒπ‘› ∈ β„• 𝑧 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ 𝑧 ≀ 𝑠)
145139, 144sylan2b 593 . . . . . . . . . . 11 ((βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 ∧ 𝑧 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))) β†’ 𝑧 ≀ 𝑠)
146145ralrimiva 3138 . . . . . . . . . 10 (βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 β†’ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠)
147146reximi 3076 . . . . . . . . 9 (βˆƒπ‘  ∈ ℝ βˆ€π‘› ∈ β„• (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) ≀ 𝑠 β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠)
14868, 147syl 17 . . . . . . . 8 (πœ‘ β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠)
149148ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠)
150 simpr 484 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ β„•) β†’ π‘š ∈ β„•)
151 simpll 764 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ πœ‘)
15277adantl 481 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ π‘˜ ∈ β„•)
153151, 152, 35syl2anc 583 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ ((𝑙 ∈ β„• ↦ 𝐡)β€˜π‘˜) = 𝐴)
154150, 3eleqtrdi 2835 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ β„•) β†’ π‘š ∈ (β„€β‰₯β€˜1))
155151, 152, 5syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ (0[,)+∞))
156155, 79syl 17 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ ℝ)
157156recnd 11239 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘˜ ∈ (1...π‘š)) β†’ 𝐴 ∈ β„‚)
158153, 154, 157fsumser 15673 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ β„•) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘š))
159 fveq2 6881 . . . . . . . . . . 11 (𝑛 = π‘š β†’ (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘š))
160159rspceeqv 3625 . . . . . . . . . 10 ((π‘š ∈ β„• ∧ Ξ£π‘˜ ∈ (1...π‘š)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘š)) β†’ βˆƒπ‘› ∈ β„• Ξ£π‘˜ ∈ (1...π‘š)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
161150, 158, 160syl2anc 583 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ β„•) β†’ βˆƒπ‘› ∈ β„• Ξ£π‘˜ ∈ (1...π‘š)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
162137, 138elrnmpti 5949 . . . . . . . . 9 (Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ↔ βˆƒπ‘› ∈ β„• Ξ£π‘˜ ∈ (1...π‘š)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
163161, 162sylibr 233 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ β„•) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)))
164163ad2ant2r 744 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)))
165 suprub 12172 . . . . . . 7 (((ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ ∧ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ… ∧ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠) ∧ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ≀ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
166121, 130, 149, 164, 165syl31anc 1370 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ Ξ£π‘˜ ∈ (1...π‘š)𝐴 ≀ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
167114, 117, 118, 119, 166letrd 11368 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) ∧ (π‘š ∈ β„• ∧ π‘₯ ≀ Ξ£π‘˜ ∈ (1...π‘š)𝐴)) β†’ π‘₯ ≀ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
16895, 167rexlimddv 3153 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ π‘₯ ≀ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
16970adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ)
170113, 169lenltd 11357 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ (π‘₯ ≀ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ↔ Β¬ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) < π‘₯))
171168, 170mpbid 231 . . 3 ((πœ‘ ∧ π‘₯ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)) β†’ Β¬ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) < π‘₯)
172 simpr1r 1228 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )) ∧ 0 ≀ π‘₯ ∧ π‘₯ = +∞)) β†’ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
1731723anassrs 1357 . . . . . 6 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
17471ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ*)
175 pnfnlt 13105 . . . . . . . 8 (sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ∈ ℝ* β†’ Β¬ +∞ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
176174, 175syl 17 . . . . . . 7 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ Β¬ +∞ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
177 breq1 5141 . . . . . . . . 9 (π‘₯ = +∞ β†’ (π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ↔ +∞ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )))
178177notbid 318 . . . . . . . 8 (π‘₯ = +∞ β†’ (Β¬ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ↔ Β¬ +∞ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )))
179178adantl 481 . . . . . . 7 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ (Β¬ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ↔ Β¬ +∞ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )))
180176, 179mpbird 257 . . . . . 6 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ Β¬ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
181173, 180pm2.21dd 194 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ = +∞) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
182 simplll 772 . . . . . 6 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ πœ‘)
183 simpr1l 1227 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )) ∧ 0 ≀ π‘₯ ∧ π‘₯ < +∞)) β†’ π‘₯ ∈ ℝ*)
1841833anassrs 1357 . . . . . . 7 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ π‘₯ ∈ ℝ*)
185 simplr 766 . . . . . . 7 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ 0 ≀ π‘₯)
186 simpr 484 . . . . . . 7 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ π‘₯ < +∞)
187 0xr 11258 . . . . . . . 8 0 ∈ ℝ*
188 pnfxr 11265 . . . . . . . 8 +∞ ∈ ℝ*
189 elico1 13364 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) β†’ (π‘₯ ∈ (0[,)+∞) ↔ (π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯ ∧ π‘₯ < +∞)))
190187, 188, 189mp2an 689 . . . . . . 7 (π‘₯ ∈ (0[,)+∞) ↔ (π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯ ∧ π‘₯ < +∞))
191184, 185, 186, 190syl3anbrc 1340 . . . . . 6 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ π‘₯ ∈ (0[,)+∞))
192 simpr1r 1228 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )) ∧ 0 ≀ π‘₯ ∧ π‘₯ < +∞)) β†’ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
1931923anassrs 1357 . . . . . 6 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
194120adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ)
195129adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ…)
196148adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠)
197194, 195, 1963jca 1125 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ (ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ ∧ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ… ∧ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠))
198 simprl 768 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ π‘₯ ∈ (0[,)+∞))
19936, 198sselid 3972 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ π‘₯ ∈ ℝ)
200 simprr 770 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
201 suprlub 12175 . . . . . . . . 9 (((ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ ∧ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ… ∧ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠) ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ) ↔ βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦))
202201biimpa 476 . . . . . . . 8 ((((ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ℝ ∧ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β‰  βˆ… ∧ βˆƒπ‘  ∈ ℝ βˆ€π‘§ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))𝑧 ≀ 𝑠) ∧ π‘₯ ∈ ℝ) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < )) β†’ βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦)
203197, 199, 200, 202syl21anc 835 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦)
20440ssriv 3978 . . . . . . . . . . . . . . . . 17 (1...𝑛) βŠ† β„•
205 ovex 7434 . . . . . . . . . . . . . . . . . 18 (1...𝑛) ∈ V
206205elpw 4598 . . . . . . . . . . . . . . . . 17 ((1...𝑛) ∈ 𝒫 β„• ↔ (1...𝑛) βŠ† β„•)
207204, 206mpbir 230 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ 𝒫 β„•
208 fzfi 13934 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
209 elin 3956 . . . . . . . . . . . . . . . 16 ((1...𝑛) ∈ (𝒫 β„• ∩ Fin) ↔ ((1...𝑛) ∈ 𝒫 β„• ∧ (1...𝑛) ∈ Fin))
210207, 208, 209mpbir2an 708 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ (𝒫 β„• ∩ Fin)
211210a1i 11 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ (1...𝑛) ∈ (𝒫 β„• ∩ Fin))
212 simpr 484 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
21345adantr 480 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ Ξ£π‘˜ ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
214212, 213eqtr4d 2767 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ 𝑦 = Ξ£π‘˜ ∈ (1...𝑛)𝐴)
215 sumeq1 15632 . . . . . . . . . . . . . . 15 (𝑏 = (1...𝑛) β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 = Ξ£π‘˜ ∈ (1...𝑛)𝐴)
216215rspceeqv 3625 . . . . . . . . . . . . . 14 (((1...𝑛) ∈ (𝒫 β„• ∩ Fin) ∧ 𝑦 = Ξ£π‘˜ ∈ (1...𝑛)𝐴) β†’ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)𝑦 = Ξ£π‘˜ ∈ 𝑏 𝐴)
217211, 214, 216syl2anc 583 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›)) β†’ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)𝑦 = Ξ£π‘˜ ∈ 𝑏 𝐴)
218217ex 412 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) β†’ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)𝑦 = Ξ£π‘˜ ∈ 𝑏 𝐴))
219218rexlimdva 3147 . . . . . . . . . . 11 (πœ‘ β†’ (βˆƒπ‘› ∈ β„• 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›) β†’ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)𝑦 = Ξ£π‘˜ ∈ 𝑏 𝐴))
220137, 138elrnmpti 5949 . . . . . . . . . . 11 (𝑦 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) ↔ βˆƒπ‘› ∈ β„• 𝑦 = (seq1( + , (𝑙 ∈ β„• ↦ 𝐡))β€˜π‘›))
22172, 73elrnmpti 5949 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) ↔ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)𝑦 = Ξ£π‘˜ ∈ 𝑏 𝐴)
222219, 220, 2213imtr4g 296 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) β†’ 𝑦 ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)))
223222ssrdv 3980 . . . . . . . . 9 (πœ‘ β†’ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴))
224 ssrexv 4043 . . . . . . . . 9 (ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)) βŠ† ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) β†’ (βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦 β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦))
225223, 224syl 17 . . . . . . . 8 (πœ‘ β†’ (βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦 β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦))
226225imp 406 . . . . . . 7 ((πœ‘ ∧ βˆƒπ‘¦ ∈ ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡))π‘₯ < 𝑦) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
227203, 226syldan 590 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ (0[,)+∞) ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
228182, 191, 193, 227syl12anc 834 . . . . 5 ((((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) ∧ π‘₯ < +∞) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
229 simplrl 774 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) β†’ π‘₯ ∈ ℝ*)
230 xrlelttric 32434 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ π‘₯ ∈ ℝ*) β†’ (+∞ ≀ π‘₯ ∨ π‘₯ < +∞))
231188, 230mpan 687 . . . . . . 7 (π‘₯ ∈ ℝ* β†’ (+∞ ≀ π‘₯ ∨ π‘₯ < +∞))
232 xgepnf 13141 . . . . . . . 8 (π‘₯ ∈ ℝ* β†’ (+∞ ≀ π‘₯ ↔ π‘₯ = +∞))
233232orbi1d 913 . . . . . . 7 (π‘₯ ∈ ℝ* β†’ ((+∞ ≀ π‘₯ ∨ π‘₯ < +∞) ↔ (π‘₯ = +∞ ∨ π‘₯ < +∞)))
234231, 233mpbid 231 . . . . . 6 (π‘₯ ∈ ℝ* β†’ (π‘₯ = +∞ ∨ π‘₯ < +∞))
235229, 234syl 17 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) β†’ (π‘₯ = +∞ ∨ π‘₯ < +∞))
236181, 228, 235mpjaodan 955 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ 0 ≀ π‘₯) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
237 0elpw 5344 . . . . . . . . 9 βˆ… ∈ 𝒫 β„•
238 0fin 9167 . . . . . . . . 9 βˆ… ∈ Fin
239 elin 3956 . . . . . . . . 9 (βˆ… ∈ (𝒫 β„• ∩ Fin) ↔ (βˆ… ∈ 𝒫 β„• ∧ βˆ… ∈ Fin))
240237, 238, 239mpbir2an 708 . . . . . . . 8 βˆ… ∈ (𝒫 β„• ∩ Fin)
241 sum0 15664 . . . . . . . . 9 Ξ£π‘˜ ∈ βˆ… 𝐴 = 0
242241eqcomi 2733 . . . . . . . 8 0 = Ξ£π‘˜ ∈ βˆ… 𝐴
243 sumeq1 15632 . . . . . . . . 9 (𝑏 = βˆ… β†’ Ξ£π‘˜ ∈ 𝑏 𝐴 = Ξ£π‘˜ ∈ βˆ… 𝐴)
244243rspceeqv 3625 . . . . . . . 8 ((βˆ… ∈ (𝒫 β„• ∩ Fin) ∧ 0 = Ξ£π‘˜ ∈ βˆ… 𝐴) β†’ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)0 = Ξ£π‘˜ ∈ 𝑏 𝐴)
245240, 242, 244mp2an 689 . . . . . . 7 βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)0 = Ξ£π‘˜ ∈ 𝑏 𝐴
24672, 73elrnmpti 5949 . . . . . . 7 (0 ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) ↔ βˆƒπ‘ ∈ (𝒫 β„• ∩ Fin)0 = Ξ£π‘˜ ∈ 𝑏 𝐴)
247245, 246mpbir 230 . . . . . 6 0 ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)
248 breq2 5142 . . . . . . 7 (𝑦 = 0 β†’ (π‘₯ < 𝑦 ↔ π‘₯ < 0))
249248rspcev 3604 . . . . . 6 ((0 ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴) ∧ π‘₯ < 0) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
250247, 249mpan 687 . . . . 5 (π‘₯ < 0 β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
251250adantl 481 . . . 4 (((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) ∧ π‘₯ < 0) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
252 xrlelttric 32434 . . . . . 6 ((0 ∈ ℝ* ∧ π‘₯ ∈ ℝ*) β†’ (0 ≀ π‘₯ ∨ π‘₯ < 0))
253187, 252mpan 687 . . . . 5 (π‘₯ ∈ ℝ* β†’ (0 ≀ π‘₯ ∨ π‘₯ < 0))
254253ad2antrl 725 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ (0 ≀ π‘₯ ∨ π‘₯ < 0))
255236, 251, 254mpjaodan 955 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ℝ* ∧ π‘₯ < sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))) β†’ βˆƒπ‘¦ ∈ ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴)π‘₯ < 𝑦)
2562, 71, 171, 255eqsupd 9448 . 2 (πœ‘ β†’ sup(ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴), ℝ*, < ) = sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
257 nfv 1909 . . 3 β„²π‘˜πœ‘
258 nfcv 2895 . . 3 β„²π‘˜β„•
259 nnex 12215 . . . 4 β„• ∈ V
260259a1i 11 . . 3 (πœ‘ β†’ β„• ∈ V)
261 icossicc 13410 . . . 4 (0[,)+∞) βŠ† (0[,]+∞)
262261, 5sselid 3972 . . 3 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐴 ∈ (0[,]+∞))
263 elex 3485 . . . . . 6 (𝑏 ∈ (𝒫 β„• ∩ Fin) β†’ 𝑏 ∈ V)
264263adantl 481 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ 𝑏 ∈ V)
265107fmpttd 7106 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ (π‘˜ ∈ 𝑏 ↦ 𝐴):π‘βŸΆ(0[,)+∞))
266 esumpfinvallem 33561 . . . . 5 ((𝑏 ∈ V ∧ (π‘˜ ∈ 𝑏 ↦ 𝐴):π‘βŸΆ(0[,)+∞)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)) = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)))
267264, 265, 266syl2anc 583 . . . 4 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)) = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)))
268108recnd 11239 . . . . 5 (((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) ∧ π‘˜ ∈ 𝑏) β†’ 𝐴 ∈ β„‚)
26999, 268gsumfsum 21296 . . . 4 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)) = Ξ£π‘˜ ∈ 𝑏 𝐴)
270267, 269eqtr3d 2766 . . 3 ((πœ‘ ∧ 𝑏 ∈ (𝒫 β„• ∩ Fin)) β†’ ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝑏 ↦ 𝐴)) = Ξ£π‘˜ ∈ 𝑏 𝐴)
271257, 258, 260, 262, 270esumval 33533 . 2 (πœ‘ β†’ Ξ£*π‘˜ ∈ ℕ𝐴 = sup(ran (𝑏 ∈ (𝒫 β„• ∩ Fin) ↦ Ξ£π‘˜ ∈ 𝑏 𝐴), ℝ*, < ))
2723, 4, 35, 43, 69isumclim 15700 . 2 (πœ‘ β†’ Ξ£π‘˜ ∈ β„• 𝐴 = sup(ran seq1( + , (𝑙 ∈ β„• ↦ 𝐡)), ℝ, < ))
273256, 271, 2723eqtr4d 2774 1 (πœ‘ β†’ Ξ£*π‘˜ ∈ ℕ𝐴 = Ξ£π‘˜ ∈ β„• 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  π’« cpw 4594   class class class wbr 5138   ↦ cmpt 5221   Or wor 5577  dom cdm 5666  ran crn 5667   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  Fincfn 8935  supcsup 9431  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11242  β„*cxr 11244   < clt 11245   ≀ cle 11246  β„•cn 12209  β„€cz 12555  β„€β‰₯cuz 12819  [,)cico 13323  [,]cicc 13324  ...cfz 13481  seqcseq 13963   ⇝ cli 15425  Ξ£csu 15629   β†Ύs cress 17172   Ξ£g cgsu 17385  β„*𝑠cxrs 17445  β„‚fldccnfld 21228  Ξ£*cesum 33514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xadd 13090  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-ordt 17446  df-xrs 17447  df-mre 17529  df-mrc 17530  df-acs 17532  df-ps 18521  df-tsr 18522  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-grp 18856  df-minusg 18857  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-ur 20077  df-ring 20130  df-cring 20131  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-ntr 22846  df-nei 22924  df-cn 23053  df-haus 23141  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-tsms 23953  df-esum 33515
This theorem is referenced by:  esumcvg  33573  esumcvgsum  33575
  Copyright terms: Public domain W3C validator