Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpcvgval Structured version   Visualization version   GIF version

Theorem esumpcvgval 34109
Description: The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypotheses
Ref Expression
esumpcvgval.1 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
esumpcvgval.2 (𝑘 = 𝑙𝐴 = 𝐵)
esumpcvgval.3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
esumpcvgval (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Distinct variable groups:   𝑘,𝑙,𝑛   𝐴,𝑙,𝑛   𝐵,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑙)   𝐴(𝑘)   𝐵(𝑙)

Proof of Theorem esumpcvgval
Dummy variables 𝑠 𝑥 𝑦 𝑧 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13157 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 nnuz 12895 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12623 . . . . 5 (𝜑 → 1 ∈ ℤ)
5 esumpcvgval.1 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
6 esumpcvgval.2 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐴 = 𝐵)
7 eqcom 2742 . . . . . . . . . . . 12 (𝑘 = 𝑙𝑙 = 𝑘)
8 eqcom 2742 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
96, 7, 83imtr3i 291 . . . . . . . . . . 11 (𝑙 = 𝑘𝐵 = 𝐴)
109cbvmptv 5225 . . . . . . . . . 10 (𝑙 ∈ ℕ ↦ 𝐵) = (𝑘 ∈ ℕ ↦ 𝐴)
115, 10fmptd 7104 . . . . . . . . 9 (𝜑 → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
1211ffvelcdmda 7074 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞))
13 elrege0 13471 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥)))
1413simplbi 497 . . . . . . . 8 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
1512, 14syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
163, 4, 15serfre 14049 . . . . . 6 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)):ℕ⟶ℝ)
1711adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
18 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1918peano2nnd 12257 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2017, 19ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞))
21 elrege0 13471 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2221simprbi 496 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2320, 22syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2416ffvelcdmda 7074 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ ℝ)
2521simplbi 497 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2724, 26addge01d 11825 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))))
2823, 27mpbid 232 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2918, 3eleqtrdi 2844 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
30 seqp1 14034 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3129, 30syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3228, 31breqtrrd 5147 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)))
33 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3410fvmpt2 6997 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ (0[,)+∞)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
3533, 5, 34syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
36 rge0ssre 13473 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
3736, 5sselid 3956 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
3816feqmptd 6947 . . . . . . . . . 10 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
39 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
40 elfznn 13570 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4140adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
4239, 41, 35syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4337recnd 11263 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4439, 41, 43syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
4542, 29, 44fsumser 15746 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
4645eqcomd 2741 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
4746mpteq2dva 5214 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
4838, 47eqtr2d 2771 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) = seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
49 esumpcvgval.3 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
5048, 49eqeltrrd 2835 . . . . . . . 8 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
513, 4, 35, 37, 50isumrecl 15781 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
52 1zzd 12623 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℤ)
53 fzfid 13991 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
54 fzssuz 13582 . . . . . . . . . . . 12 (1...𝑛) ⊆ (ℤ‘1)
5554, 3sseqtrri 4008 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
5655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5735adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
5837adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
595adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
60 elrege0 13471 . . . . . . . . . . . 12 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6160simprbi 496 . . . . . . . . . . 11 (𝐴 ∈ (0[,)+∞) → 0 ≤ 𝐴)
6259, 61syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6350adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
643, 52, 53, 56, 57, 58, 62, 63isumless 15861 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ≤ Σ𝑘 ∈ ℕ 𝐴)
6545, 64eqbrtrrd 5143 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
6665ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
67 brralrspcev 5179 . . . . . . 7 ((Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴) → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
6851, 66, 67syl2anc 584 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
693, 4, 16, 32, 68climsup 15686 . . . . 5 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⇝ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
703, 4, 69, 24climrecl 15599 . . . 4 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
7170rexrd 11285 . . 3 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
72 eqid 2735 . . . . . . 7 (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
73 sumex 15704 . . . . . . 7 Σ𝑘𝑏 𝐴 ∈ V
7472, 73elrnmpti 5942 . . . . . 6 (𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴)
75 ssnnssfz 32764 . . . . . . . . . 10 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚))
76 fzfid 13991 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → (1...𝑚) ∈ Fin)
77 elfznn 13570 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
7877, 5sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
7960simplbi 497 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0[,)+∞) → 𝐴 ∈ ℝ)
8078, 79syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8180adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8278, 61syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
8382adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
84 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → 𝑏 ⊆ (1...𝑚))
8576, 81, 83, 84fsumless 15812 . . . . . . . . . . . . 13 ((𝜑𝑏 ⊆ (1...𝑚)) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8685ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑏 ⊆ (1...𝑚) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8786reximdv 3155 . . . . . . . . . . 11 (𝜑 → (∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8887imp 406 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8975, 88sylan2 593 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
90 breq1 5122 . . . . . . . . . 10 (𝑥 = Σ𝑘𝑏 𝐴 → (𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9190rexbidv 3164 . . . . . . . . 9 (𝑥 = Σ𝑘𝑏 𝐴 → (∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9289, 91syl5ibrcom 247 . . . . . . . 8 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9392rexlimdva 3141 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9493imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
9574, 94sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
96 simpr 484 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 = Σ𝑘𝑏 𝐴)
97 inss2 4213 . . . . . . . . . . . . 13 (𝒫 ℕ ∩ Fin) ⊆ Fin
98 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
9997, 98sselid 3956 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ Fin)
100 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝜑)
101 inss1 4212 . . . . . . . . . . . . . . . . 17 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
102 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
103101, 102sselid 3956 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ 𝒫 ℕ)
104103elpwid 4584 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ⊆ ℕ)
105 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘𝑏)
106104, 105sseldd 3959 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘 ∈ ℕ)
107100, 106, 5syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ (0[,)+∞))
108107, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℝ)
10999, 108fsumrecl 15750 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑏 𝐴 ∈ ℝ)
110109adantr 480 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → Σ𝑘𝑏 𝐴 ∈ ℝ)
11196, 110eqeltrd 2834 . . . . . . . . 9 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
112111r19.29an 3144 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
11374, 112sylan2b 594 . . . . . . 7 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ∈ ℝ)
114113adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ∈ ℝ)
115 fzfid 13991 . . . . . . . 8 (𝜑 → (1...𝑚) ∈ Fin)
116115, 80fsumrecl 15750 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
117116ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
11870ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
119 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
12016frnd 6714 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
121120ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
122 1nn 12251 . . . . . . . . . 10 1 ∈ ℕ
123122ne0ii 4319 . . . . . . . . 9 ℕ ≠ ∅
124 dm0rn0 5904 . . . . . . . . . . 11 (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅)
12516fdmd 6716 . . . . . . . . . . . 12 (𝜑 → dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ℕ)
126125eqeq1d 2737 . . . . . . . . . . 11 (𝜑 → (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
127124, 126bitr3id 285 . . . . . . . . . 10 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
128127necon3bid 2976 . . . . . . . . 9 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ↔ ℕ ≠ ∅))
129123, 128mpbiri 258 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
130129ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
131 1z 12622 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
132 seqfn 14031 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
133131, 132ax-mp 5 . . . . . . . . . . . . . . 15 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
1343fneq2i 6636 . . . . . . . . . . . . . . 15 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
135133, 134mpbir 231 . . . . . . . . . . . . . 14 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ
136 dffn5 6937 . . . . . . . . . . . . . 14 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
137135, 136mpbi 230 . . . . . . . . . . . . 13 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
138 fvex 6889 . . . . . . . . . . . . 13 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ V
139137, 138elrnmpti 5942 . . . . . . . . . . . 12 (𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
140 r19.29 3101 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
141 breq1 5122 . . . . . . . . . . . . . . 15 (𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → (𝑧𝑠 ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠))
142141biimparc 479 . . . . . . . . . . . . . 14 (((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
143142rexlimivw 3137 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
144140, 143syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
145139, 144sylan2b 594 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → 𝑧𝑠)
146145ralrimiva 3132 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
147146reximi 3074 . . . . . . . . 9 (∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
14868, 147syl 17 . . . . . . . 8 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
149148ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
150 simpr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
151 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝜑)
15277adantl 481 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ)
153151, 152, 35syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
154150, 3eleqtrdi 2844 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘1))
155151, 152, 5syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
156155, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
157156recnd 11263 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℂ)
158153, 154, 157fsumser 15746 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
159 fveq2 6876 . . . . . . . . . . 11 (𝑛 = 𝑚 → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
160159rspceeqv 3624 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚)) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
161150, 158, 160syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
162137, 138elrnmpti 5942 . . . . . . . . 9 𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
163161, 162sylibr 234 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
164163ad2ant2r 747 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
165 suprub 12203 . . . . . . 7 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
166121, 130, 149, 164, 165syl31anc 1375 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
167114, 117, 118, 119, 166letrd 11392 . . . . 5 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16895, 167rexlimddv 3147 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16970adantr 480 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
170113, 169lenltd 11381 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → (𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥))
171168, 170mpbid 232 . . 3 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥)
172 simpr1r 1232 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 = +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1731723anassrs 1361 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
17471ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
175 pnfnlt 13144 . . . . . . . 8 (sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ* → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
176174, 175syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
177 breq1 5122 . . . . . . . . 9 (𝑥 = +∞ → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
178177notbid 318 . . . . . . . 8 (𝑥 = +∞ → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
179178adantl 481 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
180176, 179mpbird 257 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
181173, 180pm2.21dd 195 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
182 simplll 774 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝜑)
183 simpr1l 1231 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 ∈ ℝ*)
1841833anassrs 1361 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ ℝ*)
185 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 0 ≤ 𝑥)
186 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < +∞)
187 0xr 11282 . . . . . . . 8 0 ∈ ℝ*
188 pnfxr 11289 . . . . . . . 8 +∞ ∈ ℝ*
189 elico1 13405 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
190187, 188, 189mp2an 692 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
191184, 185, 186, 190syl3anbrc 1344 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ (0[,)+∞))
192 simpr1r 1232 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1931923anassrs 1361 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
194120adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
195129adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
196148adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
197194, 195, 1963jca 1128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠))
198 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ (0[,)+∞))
19936, 198sselid 3956 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ ℝ)
200 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
201 suprlub 12206 . . . . . . . . 9 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦))
202201biimpa 476 . . . . . . . 8 ((((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
203197, 199, 200, 202syl21anc 837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
20440ssriv 3962 . . . . . . . . . . . . . . . . 17 (1...𝑛) ⊆ ℕ
205 ovex 7438 . . . . . . . . . . . . . . . . . 18 (1...𝑛) ∈ V
206205elpw 4579 . . . . . . . . . . . . . . . . 17 ((1...𝑛) ∈ 𝒫 ℕ ↔ (1...𝑛) ⊆ ℕ)
207204, 206mpbir 231 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ 𝒫 ℕ
208 fzfi 13990 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
209 elin 3942 . . . . . . . . . . . . . . . 16 ((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑛) ∈ 𝒫 ℕ ∧ (1...𝑛) ∈ Fin))
210207, 208, 209mpbir2an 711 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ (𝒫 ℕ ∩ Fin)
211210a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → (1...𝑛) ∈ (𝒫 ℕ ∩ Fin))
212 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
21345adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
214212, 213eqtr4d 2773 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴)
215 sumeq1 15705 . . . . . . . . . . . . . . 15 (𝑏 = (1...𝑛) → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
216215rspceeqv 3624 . . . . . . . . . . . . . 14 (((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
217211, 214, 216syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
218217ex 412 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
219218rexlimdva 3141 . . . . . . . . . . 11 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
220137, 138elrnmpti 5942 . . . . . . . . . . 11 (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
22172, 73elrnmpti 5942 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
222219, 220, 2213imtr4g 296 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) → 𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)))
223222ssrdv 3964 . . . . . . . . 9 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴))
224 ssrexv 4028 . . . . . . . . 9 (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
225223, 224syl 17 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
226225imp 406 . . . . . . 7 ((𝜑 ∧ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
227203, 226syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
228182, 191, 193, 227syl12anc 836 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
229 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
230 xrlelttric 32729 . . . . . . . 8 ((+∞ ∈ ℝ*𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥𝑥 < +∞))
231188, 230mpan 690 . . . . . . 7 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 < +∞))
232 xgepnf 13181 . . . . . . . 8 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 = +∞))
233232orbi1d 916 . . . . . . 7 (𝑥 ∈ ℝ* → ((+∞ ≤ 𝑥𝑥 < +∞) ↔ (𝑥 = +∞ ∨ 𝑥 < +∞)))
234231, 233mpbid 232 . . . . . 6 (𝑥 ∈ ℝ* → (𝑥 = +∞ ∨ 𝑥 < +∞))
235229, 234syl 17 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → (𝑥 = +∞ ∨ 𝑥 < +∞))
236181, 228, 235mpjaodan 960 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
237 0elpw 5326 . . . . . . . . 9 ∅ ∈ 𝒫 ℕ
238 0fi 9056 . . . . . . . . 9 ∅ ∈ Fin
239 elin 3942 . . . . . . . . 9 (∅ ∈ (𝒫 ℕ ∩ Fin) ↔ (∅ ∈ 𝒫 ℕ ∧ ∅ ∈ Fin))
240237, 238, 239mpbir2an 711 . . . . . . . 8 ∅ ∈ (𝒫 ℕ ∩ Fin)
241 sum0 15737 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐴 = 0
242241eqcomi 2744 . . . . . . . 8 0 = Σ𝑘 ∈ ∅ 𝐴
243 sumeq1 15705 . . . . . . . . 9 (𝑏 = ∅ → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ ∅ 𝐴)
244243rspceeqv 3624 . . . . . . . 8 ((∅ ∈ (𝒫 ℕ ∩ Fin) ∧ 0 = Σ𝑘 ∈ ∅ 𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
245240, 242, 244mp2an 692 . . . . . . 7 𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴
24672, 73elrnmpti 5942 . . . . . . 7 (0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
247245, 246mpbir 231 . . . . . 6 0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
248 breq2 5123 . . . . . . 7 (𝑦 = 0 → (𝑥 < 𝑦𝑥 < 0))
249248rspcev 3601 . . . . . 6 ((0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
250247, 249mpan 690 . . . . 5 (𝑥 < 0 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
251250adantl 481 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
252 xrlelttric 32729 . . . . . 6 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ 𝑥𝑥 < 0))
253187, 252mpan 690 . . . . 5 (𝑥 ∈ ℝ* → (0 ≤ 𝑥𝑥 < 0))
254253ad2antrl 728 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (0 ≤ 𝑥𝑥 < 0))
255236, 251, 254mpjaodan 960 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
2562, 71, 171, 255eqsupd 9469 . 2 (𝜑 → sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ) = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
257 nfv 1914 . . 3 𝑘𝜑
258 nfcv 2898 . . 3 𝑘
259 nnex 12246 . . . 4 ℕ ∈ V
260259a1i 11 . . 3 (𝜑 → ℕ ∈ V)
261 icossicc 13453 . . . 4 (0[,)+∞) ⊆ (0[,]+∞)
262261, 5sselid 3956 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
263 elex 3480 . . . . . 6 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → 𝑏 ∈ V)
264263adantl 481 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ V)
265107fmpttd 7105 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑏𝐴):𝑏⟶(0[,)+∞))
266 esumpfinvallem 34105 . . . . 5 ((𝑏 ∈ V ∧ (𝑘𝑏𝐴):𝑏⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
267264, 265, 266syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
268108recnd 11263 . . . . 5 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℂ)
26999, 268gsumfsum 21402 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
270267, 269eqtr3d 2772 . . 3 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
271257, 258, 260, 262, 270esumval 34077 . 2 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ))
2723, 4, 35, 43, 69isumclim 15773 . 2 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
273256, 271, 2723eqtr4d 2780 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201   Or wor 5560  dom cdm 5654  ran crn 5655   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cn 12240  cz 12588  cuz 12852  [,)cico 13364  [,]cicc 13365  ...cfz 13524  seqcseq 14019  cli 15500  Σcsu 15702  s cress 17251   Σg cgsu 17454  *𝑠cxrs 17514  fldccnfld 21315  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-ordt 17515  df-xrs 17516  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-cring 20196  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-ntr 22958  df-nei 23036  df-cn 23165  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tsms 24065  df-esum 34059
This theorem is referenced by:  esumcvg  34117  esumcvgsum  34119
  Copyright terms: Public domain W3C validator