Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpcvgval Structured version   Visualization version   GIF version

Theorem esumpcvgval 32046
Description: The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypotheses
Ref Expression
esumpcvgval.1 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
esumpcvgval.2 (𝑘 = 𝑙𝐴 = 𝐵)
esumpcvgval.3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
esumpcvgval (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Distinct variable groups:   𝑘,𝑙,𝑛   𝐴,𝑙,𝑛   𝐵,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑙)   𝐴(𝑘)   𝐵(𝑙)

Proof of Theorem esumpcvgval
Dummy variables 𝑠 𝑥 𝑦 𝑧 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12875 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 nnuz 12621 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12351 . . . . 5 (𝜑 → 1 ∈ ℤ)
5 esumpcvgval.1 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
6 esumpcvgval.2 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐴 = 𝐵)
7 eqcom 2745 . . . . . . . . . . . 12 (𝑘 = 𝑙𝑙 = 𝑘)
8 eqcom 2745 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
96, 7, 83imtr3i 291 . . . . . . . . . . 11 (𝑙 = 𝑘𝐵 = 𝐴)
109cbvmptv 5187 . . . . . . . . . 10 (𝑙 ∈ ℕ ↦ 𝐵) = (𝑘 ∈ ℕ ↦ 𝐴)
115, 10fmptd 6988 . . . . . . . . 9 (𝜑 → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
1211ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞))
13 elrege0 13186 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥)))
1413simplbi 498 . . . . . . . 8 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
1512, 14syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
163, 4, 15serfre 13752 . . . . . 6 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)):ℕ⟶ℝ)
1711adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
18 simpr 485 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1918peano2nnd 11990 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2017, 19ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞))
21 elrege0 13186 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2221simprbi 497 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2320, 22syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2416ffvelrnda 6961 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ ℝ)
2521simplbi 498 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2724, 26addge01d 11563 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))))
2823, 27mpbid 231 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2918, 3eleqtrdi 2849 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
30 seqp1 13736 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3129, 30syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3228, 31breqtrrd 5102 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)))
33 simpr 485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3410fvmpt2 6886 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ (0[,)+∞)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
3533, 5, 34syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
36 rge0ssre 13188 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
3736, 5sselid 3919 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
3816feqmptd 6837 . . . . . . . . . 10 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
39 simpll 764 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
40 elfznn 13285 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4140adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
4239, 41, 35syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4337recnd 11003 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4439, 41, 43syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
4542, 29, 44fsumser 15442 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
4645eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
4746mpteq2dva 5174 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
4838, 47eqtr2d 2779 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) = seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
49 esumpcvgval.3 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
5048, 49eqeltrrd 2840 . . . . . . . 8 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
513, 4, 35, 37, 50isumrecl 15477 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
52 1zzd 12351 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℤ)
53 fzfid 13693 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
54 fzssuz 13297 . . . . . . . . . . . 12 (1...𝑛) ⊆ (ℤ‘1)
5554, 3sseqtrri 3958 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
5655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5735adantlr 712 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
5837adantlr 712 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
595adantlr 712 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
60 elrege0 13186 . . . . . . . . . . . 12 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6160simprbi 497 . . . . . . . . . . 11 (𝐴 ∈ (0[,)+∞) → 0 ≤ 𝐴)
6259, 61syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6350adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
643, 52, 53, 56, 57, 58, 62, 63isumless 15557 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ≤ Σ𝑘 ∈ ℕ 𝐴)
6545, 64eqbrtrrd 5098 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
6665ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
67 brralrspcev 5134 . . . . . . 7 ((Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴) → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
6851, 66, 67syl2anc 584 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
693, 4, 16, 32, 68climsup 15381 . . . . 5 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⇝ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
703, 4, 69, 24climrecl 15292 . . . 4 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
7170rexrd 11025 . . 3 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
72 eqid 2738 . . . . . . 7 (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
73 sumex 15399 . . . . . . 7 Σ𝑘𝑏 𝐴 ∈ V
7472, 73elrnmpti 5869 . . . . . 6 (𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴)
75 ssnnssfz 31108 . . . . . . . . . 10 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚))
76 fzfid 13693 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → (1...𝑚) ∈ Fin)
77 elfznn 13285 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
7877, 5sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
7960simplbi 498 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0[,)+∞) → 𝐴 ∈ ℝ)
8078, 79syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8180adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8278, 61syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
8382adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
84 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → 𝑏 ⊆ (1...𝑚))
8576, 81, 83, 84fsumless 15508 . . . . . . . . . . . . 13 ((𝜑𝑏 ⊆ (1...𝑚)) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8685ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑏 ⊆ (1...𝑚) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8786reximdv 3202 . . . . . . . . . . 11 (𝜑 → (∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8887imp 407 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8975, 88sylan2 593 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
90 breq1 5077 . . . . . . . . . 10 (𝑥 = Σ𝑘𝑏 𝐴 → (𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9190rexbidv 3226 . . . . . . . . 9 (𝑥 = Σ𝑘𝑏 𝐴 → (∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9289, 91syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9392rexlimdva 3213 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9493imp 407 . . . . . 6 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
9574, 94sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
96 simpr 485 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 = Σ𝑘𝑏 𝐴)
97 inss2 4163 . . . . . . . . . . . . 13 (𝒫 ℕ ∩ Fin) ⊆ Fin
98 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
9997, 98sselid 3919 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ Fin)
100 simpll 764 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝜑)
101 inss1 4162 . . . . . . . . . . . . . . . . 17 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
102 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
103101, 102sselid 3919 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ 𝒫 ℕ)
104103elpwid 4544 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ⊆ ℕ)
105 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘𝑏)
106104, 105sseldd 3922 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘 ∈ ℕ)
107100, 106, 5syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ (0[,)+∞))
108107, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℝ)
10999, 108fsumrecl 15446 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑏 𝐴 ∈ ℝ)
110109adantr 481 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → Σ𝑘𝑏 𝐴 ∈ ℝ)
11196, 110eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
112111r19.29an 3217 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
11374, 112sylan2b 594 . . . . . . 7 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ∈ ℝ)
114113adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ∈ ℝ)
115 fzfid 13693 . . . . . . . 8 (𝜑 → (1...𝑚) ∈ Fin)
116115, 80fsumrecl 15446 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
117116ad2antrr 723 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
11870ad2antrr 723 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
119 simprr 770 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
12016frnd 6608 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
121120ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
122 1nn 11984 . . . . . . . . . 10 1 ∈ ℕ
123122ne0ii 4271 . . . . . . . . 9 ℕ ≠ ∅
124 dm0rn0 5834 . . . . . . . . . . 11 (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅)
12516fdmd 6611 . . . . . . . . . . . 12 (𝜑 → dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ℕ)
126125eqeq1d 2740 . . . . . . . . . . 11 (𝜑 → (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
127124, 126bitr3id 285 . . . . . . . . . 10 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
128127necon3bid 2988 . . . . . . . . 9 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ↔ ℕ ≠ ∅))
129123, 128mpbiri 257 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
130129ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
131 1z 12350 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
132 seqfn 13733 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
133131, 132ax-mp 5 . . . . . . . . . . . . . . 15 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
1343fneq2i 6531 . . . . . . . . . . . . . . 15 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
135133, 134mpbir 230 . . . . . . . . . . . . . 14 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ
136 dffn5 6828 . . . . . . . . . . . . . 14 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
137135, 136mpbi 229 . . . . . . . . . . . . 13 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
138 fvex 6787 . . . . . . . . . . . . 13 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ V
139137, 138elrnmpti 5869 . . . . . . . . . . . 12 (𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
140 r19.29 3184 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
141 breq1 5077 . . . . . . . . . . . . . . 15 (𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → (𝑧𝑠 ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠))
142141biimparc 480 . . . . . . . . . . . . . 14 (((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
143142rexlimivw 3211 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
144140, 143syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
145139, 144sylan2b 594 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → 𝑧𝑠)
146145ralrimiva 3103 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
147146reximi 3178 . . . . . . . . 9 (∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
14868, 147syl 17 . . . . . . . 8 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
149148ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
150 simpr 485 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
151 simpll 764 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝜑)
15277adantl 482 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ)
153151, 152, 35syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
154150, 3eleqtrdi 2849 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘1))
155151, 152, 5syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
156155, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
157156recnd 11003 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℂ)
158153, 154, 157fsumser 15442 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
159 fveq2 6774 . . . . . . . . . . 11 (𝑛 = 𝑚 → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
160159rspceeqv 3575 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚)) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
161150, 158, 160syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
162137, 138elrnmpti 5869 . . . . . . . . 9 𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
163161, 162sylibr 233 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
164163ad2ant2r 744 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
165 suprub 11936 . . . . . . 7 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
166121, 130, 149, 164, 165syl31anc 1372 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
167114, 117, 118, 119, 166letrd 11132 . . . . 5 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16895, 167rexlimddv 3220 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16970adantr 481 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
170113, 169lenltd 11121 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → (𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥))
171168, 170mpbid 231 . . 3 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥)
172 simpr1r 1230 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 = +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1731723anassrs 1359 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
17471ad3antrrr 727 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
175 pnfnlt 12864 . . . . . . . 8 (sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ* → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
176174, 175syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
177 breq1 5077 . . . . . . . . 9 (𝑥 = +∞ → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
178177notbid 318 . . . . . . . 8 (𝑥 = +∞ → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
179178adantl 482 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
180176, 179mpbird 256 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
181173, 180pm2.21dd 194 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
182 simplll 772 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝜑)
183 simpr1l 1229 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 ∈ ℝ*)
1841833anassrs 1359 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ ℝ*)
185 simplr 766 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 0 ≤ 𝑥)
186 simpr 485 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < +∞)
187 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
188 pnfxr 11029 . . . . . . . 8 +∞ ∈ ℝ*
189 elico1 13122 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
190187, 188, 189mp2an 689 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
191184, 185, 186, 190syl3anbrc 1342 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ (0[,)+∞))
192 simpr1r 1230 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1931923anassrs 1359 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
194120adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
195129adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
196148adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
197194, 195, 1963jca 1127 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠))
198 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ (0[,)+∞))
19936, 198sselid 3919 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ ℝ)
200 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
201 suprlub 11939 . . . . . . . . 9 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦))
202201biimpa 477 . . . . . . . 8 ((((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
203197, 199, 200, 202syl21anc 835 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
20440ssriv 3925 . . . . . . . . . . . . . . . . 17 (1...𝑛) ⊆ ℕ
205 ovex 7308 . . . . . . . . . . . . . . . . . 18 (1...𝑛) ∈ V
206205elpw 4537 . . . . . . . . . . . . . . . . 17 ((1...𝑛) ∈ 𝒫 ℕ ↔ (1...𝑛) ⊆ ℕ)
207204, 206mpbir 230 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ 𝒫 ℕ
208 fzfi 13692 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
209 elin 3903 . . . . . . . . . . . . . . . 16 ((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑛) ∈ 𝒫 ℕ ∧ (1...𝑛) ∈ Fin))
210207, 208, 209mpbir2an 708 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ (𝒫 ℕ ∩ Fin)
211210a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → (1...𝑛) ∈ (𝒫 ℕ ∩ Fin))
212 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
21345adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
214212, 213eqtr4d 2781 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴)
215 sumeq1 15400 . . . . . . . . . . . . . . 15 (𝑏 = (1...𝑛) → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
216215rspceeqv 3575 . . . . . . . . . . . . . 14 (((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
217211, 214, 216syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
218217ex 413 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
219218rexlimdva 3213 . . . . . . . . . . 11 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
220137, 138elrnmpti 5869 . . . . . . . . . . 11 (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
22172, 73elrnmpti 5869 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
222219, 220, 2213imtr4g 296 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) → 𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)))
223222ssrdv 3927 . . . . . . . . 9 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴))
224 ssrexv 3988 . . . . . . . . 9 (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
225223, 224syl 17 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
226225imp 407 . . . . . . 7 ((𝜑 ∧ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
227203, 226syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
228182, 191, 193, 227syl12anc 834 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
229 simplrl 774 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
230 xrlelttric 31075 . . . . . . . 8 ((+∞ ∈ ℝ*𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥𝑥 < +∞))
231188, 230mpan 687 . . . . . . 7 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 < +∞))
232 xgepnf 12899 . . . . . . . 8 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 = +∞))
233232orbi1d 914 . . . . . . 7 (𝑥 ∈ ℝ* → ((+∞ ≤ 𝑥𝑥 < +∞) ↔ (𝑥 = +∞ ∨ 𝑥 < +∞)))
234231, 233mpbid 231 . . . . . 6 (𝑥 ∈ ℝ* → (𝑥 = +∞ ∨ 𝑥 < +∞))
235229, 234syl 17 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → (𝑥 = +∞ ∨ 𝑥 < +∞))
236181, 228, 235mpjaodan 956 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
237 0elpw 5278 . . . . . . . . 9 ∅ ∈ 𝒫 ℕ
238 0fin 8954 . . . . . . . . 9 ∅ ∈ Fin
239 elin 3903 . . . . . . . . 9 (∅ ∈ (𝒫 ℕ ∩ Fin) ↔ (∅ ∈ 𝒫 ℕ ∧ ∅ ∈ Fin))
240237, 238, 239mpbir2an 708 . . . . . . . 8 ∅ ∈ (𝒫 ℕ ∩ Fin)
241 sum0 15433 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐴 = 0
242241eqcomi 2747 . . . . . . . 8 0 = Σ𝑘 ∈ ∅ 𝐴
243 sumeq1 15400 . . . . . . . . 9 (𝑏 = ∅ → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ ∅ 𝐴)
244243rspceeqv 3575 . . . . . . . 8 ((∅ ∈ (𝒫 ℕ ∩ Fin) ∧ 0 = Σ𝑘 ∈ ∅ 𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
245240, 242, 244mp2an 689 . . . . . . 7 𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴
24672, 73elrnmpti 5869 . . . . . . 7 (0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
247245, 246mpbir 230 . . . . . 6 0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
248 breq2 5078 . . . . . . 7 (𝑦 = 0 → (𝑥 < 𝑦𝑥 < 0))
249248rspcev 3561 . . . . . 6 ((0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
250247, 249mpan 687 . . . . 5 (𝑥 < 0 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
251250adantl 482 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
252 xrlelttric 31075 . . . . . 6 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ 𝑥𝑥 < 0))
253187, 252mpan 687 . . . . 5 (𝑥 ∈ ℝ* → (0 ≤ 𝑥𝑥 < 0))
254253ad2antrl 725 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (0 ≤ 𝑥𝑥 < 0))
255236, 251, 254mpjaodan 956 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
2562, 71, 171, 255eqsupd 9216 . 2 (𝜑 → sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ) = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
257 nfv 1917 . . 3 𝑘𝜑
258 nfcv 2907 . . 3 𝑘
259 nnex 11979 . . . 4 ℕ ∈ V
260259a1i 11 . . 3 (𝜑 → ℕ ∈ V)
261 icossicc 13168 . . . 4 (0[,)+∞) ⊆ (0[,]+∞)
262261, 5sselid 3919 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
263 elex 3450 . . . . . 6 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → 𝑏 ∈ V)
264263adantl 482 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ V)
265107fmpttd 6989 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑏𝐴):𝑏⟶(0[,)+∞))
266 esumpfinvallem 32042 . . . . 5 ((𝑏 ∈ V ∧ (𝑘𝑏𝐴):𝑏⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
267264, 265, 266syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
268108recnd 11003 . . . . 5 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℂ)
26999, 268gsumfsum 20665 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
270267, 269eqtr3d 2780 . . 3 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
271257, 258, 260, 262, 270esumval 32014 . 2 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ))
2723, 4, 35, 43, 69isumclim 15469 . 2 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
273256, 271, 2723eqtr4d 2788 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157   Or wor 5502  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cn 11973  cz 12319  cuz 12582  [,)cico 13081  [,]cicc 13082  ...cfz 13239  seqcseq 13721  cli 15193  Σcsu 15397  s cress 16941   Σg cgsu 17151  *𝑠cxrs 17211  fldccnfld 20597  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-ordt 17212  df-xrs 17213  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-ntr 22171  df-nei 22249  df-cn 22378  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tsms 23278  df-esum 31996
This theorem is referenced by:  esumcvg  32054  esumcvgsum  32056
  Copyright terms: Public domain W3C validator