Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difioo Structured version   Visualization version   GIF version

Theorem difioo 32784
Description: The difference between two open intervals sharing the same lower bound. (Contributed by Thierry Arnoux, 26-Sep-2017.)
Assertion
Ref Expression
difioo (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶))

Proof of Theorem difioo
StepHypRef Expression
1 incom 4209 . . . 4 ((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ((𝐵[,)𝐶) ∩ (𝐴(,)𝐵))
2 joiniooico 32776 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)))
32anassrs 467 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)))
43simpld 494 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
51, 4eqtr3id 2791 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐵[,)𝐶) ∩ (𝐴(,)𝐵)) = ∅)
63simprd 495 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))
7 uncom 4158 . . . . 5 ((𝐵[,)𝐶) ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶))
87a1i 11 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐵[,)𝐶) ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)))
9 simpll1 1213 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → 𝐴 ∈ ℝ*)
10 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ*)
1110adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → 𝐶 ∈ ℝ*)
129xrleidd 13194 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → 𝐴𝐴)
13 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → 𝐵𝐶)
14 ioossioo 13481 . . . . . 6 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐴𝐵𝐶)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
159, 11, 12, 13, 14syl22anc 839 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
16 ssequn2 4189 . . . . 5 ((𝐴(,)𝐵) ⊆ (𝐴(,)𝐶) ↔ ((𝐴(,)𝐶) ∪ (𝐴(,)𝐵)) = (𝐴(,)𝐶))
1715, 16sylib 218 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐴(,)𝐶) ∪ (𝐴(,)𝐵)) = (𝐴(,)𝐶))
186, 8, 173eqtr4d 2787 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐵[,)𝐶) ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐶) ∪ (𝐴(,)𝐵)))
19 difeq 32537 . . 3 (((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶) ↔ (((𝐵[,)𝐶) ∩ (𝐴(,)𝐵)) = ∅ ∧ ((𝐵[,)𝐶) ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐶) ∪ (𝐴(,)𝐵))))
205, 18, 19sylanbrc 583 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐵𝐶) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶))
21 simpll1 1213 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐴 ∈ ℝ*)
22 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
2322adantr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ*)
2421xrleidd 13194 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐴𝐴)
2510adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ*)
26 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
2725, 23, 26xrltled 13192 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → 𝐶𝐵)
28 ioossioo 13481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐶𝐵)) → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
2921, 23, 24, 27, 28syl22anc 839 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
30 ssdif0 4366 . . . 4 ((𝐴(,)𝐶) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = ∅)
3129, 30sylib 218 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = ∅)
32 ico0 13433 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵[,)𝐶) = ∅ ↔ 𝐶𝐵))
3332biimpar 477 . . . 4 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐶𝐵) → (𝐵[,)𝐶) = ∅)
3423, 25, 27, 33syl21anc 838 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → (𝐵[,)𝐶) = ∅)
3531, 34eqtr4d 2780 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) ∧ 𝐶 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶))
36 xrlelttric 32756 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶𝐶 < 𝐵))
3722, 10, 36syl2anc 584 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵𝐶𝐶 < 𝐵))
3820, 35, 37mpjaodan 961 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ioo 13391  df-ico 13393
This theorem is referenced by:  dya2iocbrsiga  34277  dya2icobrsiga  34278
  Copyright terms: Public domain W3C validator