Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   GIF version

Theorem lt2addrd 32674
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1 (𝜑𝐴 ∈ ℝ)
lt2addrd.2 (𝜑𝐵 ∈ ℝ)
lt2addrd.3 (𝜑𝐶 ∈ ℝ)
lt2addrd.4 (𝜑𝐴 < (𝐵 + 𝐶))
Assertion
Ref Expression
lt2addrd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 lt2addrd.3 . . . . . 6 (𝜑𝐶 ∈ ℝ)
31, 2readdcld 11203 . . . . 5 (𝜑 → (𝐵 + 𝐶) ∈ ℝ)
4 lt2addrd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
53, 4resubcld 11606 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ)
65rehalfcld 12429 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ)
71, 6resubcld 11606 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
82, 6resubcld 11606 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
92recnd 11202 . . . . . 6 (𝜑𝐶 ∈ ℂ)
101recnd 11202 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1110, 9addcld 11193 . . . . . . . 8 (𝜑 → (𝐵 + 𝐶) ∈ ℂ)
124recnd 11202 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1311, 12subcld 11533 . . . . . . 7 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℂ)
1413halfcld 12427 . . . . . 6 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℂ)
159, 14, 14subsub4d 11564 . . . . 5 (𝜑 → ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2)) = (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
1615oveq2d 7403 . . . 4 (𝜑 → (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
179, 14subcld 11533 . . . . 5 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
1810, 14, 17subadd23d 11555 . . . 4 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))))
19132halvesd 12428 . . . . . 6 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) = ((𝐵 + 𝐶) − 𝐴))
2019, 13eqeltrd 2828 . . . . 5 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
2110, 9, 20addsubassd 11553 . . . 4 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
2216, 18, 213eqtr4d 2774 . . 3 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
2319oveq2d 7403 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)))
2411, 12nncand 11538 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)) = 𝐴)
2522, 23, 243eqtrrd 2769 . 2 (𝜑𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
26 lt2addrd.4 . . . . 5 (𝜑𝐴 < (𝐵 + 𝐶))
27 difrp 12991 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
284, 3, 27syl2anc 584 . . . . 5 (𝜑 → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
2926, 28mpbid 232 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+)
3029rphalfcld 13007 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ+)
311, 30ltsubrpd 13027 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵)
322, 30ltsubrpd 13027 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)
33 oveq1 7394 . . . . 5 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐))
3433eqeq2d 2740 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = (𝑏 + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐)))
35 breq1 5110 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 < 𝐵 ↔ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵))
3634, 353anbi12d 1439 . . 3 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶)))
37 oveq2 7395 . . . . 5 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
3837eqeq2d 2740 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)))))
39 breq1 5110 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑐 < 𝐶 ↔ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶))
4038, 393anbi13d 1440 . . 3 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)))
4136, 40rspc2ev 3601 . 2 (((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
427, 8, 25, 31, 32, 41syl113anc 1384 1 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071   < clt 11208  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952
This theorem is referenced by:  xlt2addrd  32682
  Copyright terms: Public domain W3C validator