Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   GIF version

Theorem lt2addrd 32647
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1 (𝜑𝐴 ∈ ℝ)
lt2addrd.2 (𝜑𝐵 ∈ ℝ)
lt2addrd.3 (𝜑𝐶 ∈ ℝ)
lt2addrd.4 (𝜑𝐴 < (𝐵 + 𝐶))
Assertion
Ref Expression
lt2addrd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 lt2addrd.3 . . . . . 6 (𝜑𝐶 ∈ ℝ)
31, 2readdcld 11179 . . . . 5 (𝜑 → (𝐵 + 𝐶) ∈ ℝ)
4 lt2addrd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
53, 4resubcld 11582 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ)
65rehalfcld 12405 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ)
71, 6resubcld 11582 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
82, 6resubcld 11582 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
92recnd 11178 . . . . . 6 (𝜑𝐶 ∈ ℂ)
101recnd 11178 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1110, 9addcld 11169 . . . . . . . 8 (𝜑 → (𝐵 + 𝐶) ∈ ℂ)
124recnd 11178 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1311, 12subcld 11509 . . . . . . 7 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℂ)
1413halfcld 12403 . . . . . 6 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℂ)
159, 14, 14subsub4d 11540 . . . . 5 (𝜑 → ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2)) = (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
1615oveq2d 7385 . . . 4 (𝜑 → (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
179, 14subcld 11509 . . . . 5 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
1810, 14, 17subadd23d 11531 . . . 4 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))))
19132halvesd 12404 . . . . . 6 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) = ((𝐵 + 𝐶) − 𝐴))
2019, 13eqeltrd 2828 . . . . 5 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
2110, 9, 20addsubassd 11529 . . . 4 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
2216, 18, 213eqtr4d 2774 . . 3 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
2319oveq2d 7385 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)))
2411, 12nncand 11514 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)) = 𝐴)
2522, 23, 243eqtrrd 2769 . 2 (𝜑𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
26 lt2addrd.4 . . . . 5 (𝜑𝐴 < (𝐵 + 𝐶))
27 difrp 12967 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
284, 3, 27syl2anc 584 . . . . 5 (𝜑 → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
2926, 28mpbid 232 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+)
3029rphalfcld 12983 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ+)
311, 30ltsubrpd 13003 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵)
322, 30ltsubrpd 13003 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)
33 oveq1 7376 . . . . 5 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐))
3433eqeq2d 2740 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = (𝑏 + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐)))
35 breq1 5105 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 < 𝐵 ↔ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵))
3634, 353anbi12d 1439 . . 3 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶)))
37 oveq2 7377 . . . . 5 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
3837eqeq2d 2740 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)))))
39 breq1 5105 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑐 < 𝐶 ↔ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶))
4038, 393anbi13d 1440 . . 3 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)))
4136, 40rspc2ev 3598 . 2 (((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
427, 8, 25, 31, 32, 41syl113anc 1384 1 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043   + caddc 11047   < clt 11184  cmin 11381   / cdiv 11811  2c2 12217  +crp 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-rp 12928
This theorem is referenced by:  xlt2addrd  32655
  Copyright terms: Public domain W3C validator