Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   GIF version

Theorem lt2addrd 32776
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1 (𝜑𝐴 ∈ ℝ)
lt2addrd.2 (𝜑𝐵 ∈ ℝ)
lt2addrd.3 (𝜑𝐶 ∈ ℝ)
lt2addrd.4 (𝜑𝐴 < (𝐵 + 𝐶))
Assertion
Ref Expression
lt2addrd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 lt2addrd.3 . . . . . 6 (𝜑𝐶 ∈ ℝ)
31, 2readdcld 11297 . . . . 5 (𝜑 → (𝐵 + 𝐶) ∈ ℝ)
4 lt2addrd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
53, 4resubcld 11698 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ)
65rehalfcld 12520 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ)
71, 6resubcld 11698 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
82, 6resubcld 11698 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
92recnd 11296 . . . . . 6 (𝜑𝐶 ∈ ℂ)
101recnd 11296 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1110, 9addcld 11287 . . . . . . . 8 (𝜑 → (𝐵 + 𝐶) ∈ ℂ)
124recnd 11296 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1311, 12subcld 11627 . . . . . . 7 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℂ)
1413halfcld 12518 . . . . . 6 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℂ)
159, 14, 14subsub4d 11658 . . . . 5 (𝜑 → ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2)) = (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
1615oveq2d 7454 . . . 4 (𝜑 → (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
179, 14subcld 11627 . . . . 5 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
1810, 14, 17subadd23d 11649 . . . 4 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))))
19132halvesd 12519 . . . . . 6 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) = ((𝐵 + 𝐶) − 𝐴))
2019, 13eqeltrd 2841 . . . . 5 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
2110, 9, 20addsubassd 11647 . . . 4 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
2216, 18, 213eqtr4d 2787 . . 3 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
2319oveq2d 7454 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)))
2411, 12nncand 11632 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)) = 𝐴)
2522, 23, 243eqtrrd 2782 . 2 (𝜑𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
26 lt2addrd.4 . . . . 5 (𝜑𝐴 < (𝐵 + 𝐶))
27 difrp 13080 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
284, 3, 27syl2anc 584 . . . . 5 (𝜑 → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
2926, 28mpbid 232 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+)
3029rphalfcld 13096 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ+)
311, 30ltsubrpd 13116 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵)
322, 30ltsubrpd 13116 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)
33 oveq1 7445 . . . . 5 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐))
3433eqeq2d 2748 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = (𝑏 + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐)))
35 breq1 5154 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 < 𝐵 ↔ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵))
3634, 353anbi12d 1438 . . 3 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶)))
37 oveq2 7446 . . . . 5 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
3837eqeq2d 2748 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)))))
39 breq1 5154 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑐 < 𝐶 ↔ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶))
4038, 393anbi13d 1439 . . 3 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)))
4136, 40rspc2ev 3638 . 2 (((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
427, 8, 25, 31, 32, 41syl113anc 1383 1 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1539  wcel 2108  wrex 3070   class class class wbr 5151  (class class class)co 7438  cc 11160  cr 11161   + caddc 11165   < clt 11302  cmin 11499   / cdiv 11927  2c2 12328  +crp 13041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-po 5601  df-so 5602  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-2 12336  df-rp 13042
This theorem is referenced by:  xlt2addrd  32783
  Copyright terms: Public domain W3C validator