Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   GIF version

Theorem lt2addrd 32682
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1 (𝜑𝐴 ∈ ℝ)
lt2addrd.2 (𝜑𝐵 ∈ ℝ)
lt2addrd.3 (𝜑𝐶 ∈ ℝ)
lt2addrd.4 (𝜑𝐴 < (𝐵 + 𝐶))
Assertion
Ref Expression
lt2addrd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 lt2addrd.3 . . . . . 6 (𝜑𝐶 ∈ ℝ)
31, 2readdcld 11221 . . . . 5 (𝜑 → (𝐵 + 𝐶) ∈ ℝ)
4 lt2addrd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
53, 4resubcld 11622 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ)
65rehalfcld 12445 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ)
71, 6resubcld 11622 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
82, 6resubcld 11622 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
92recnd 11220 . . . . . 6 (𝜑𝐶 ∈ ℂ)
101recnd 11220 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1110, 9addcld 11211 . . . . . . . 8 (𝜑 → (𝐵 + 𝐶) ∈ ℂ)
124recnd 11220 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1311, 12subcld 11551 . . . . . . 7 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℂ)
1413halfcld 12443 . . . . . 6 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℂ)
159, 14, 14subsub4d 11582 . . . . 5 (𝜑 → ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2)) = (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
1615oveq2d 7410 . . . 4 (𝜑 → (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
179, 14subcld 11551 . . . . 5 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
1810, 14, 17subadd23d 11573 . . . 4 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))))
19132halvesd 12444 . . . . . 6 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) = ((𝐵 + 𝐶) − 𝐴))
2019, 13eqeltrd 2829 . . . . 5 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
2110, 9, 20addsubassd 11571 . . . 4 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
2216, 18, 213eqtr4d 2775 . . 3 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
2319oveq2d 7410 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)))
2411, 12nncand 11556 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)) = 𝐴)
2522, 23, 243eqtrrd 2770 . 2 (𝜑𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
26 lt2addrd.4 . . . . 5 (𝜑𝐴 < (𝐵 + 𝐶))
27 difrp 13004 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
284, 3, 27syl2anc 584 . . . . 5 (𝜑 → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
2926, 28mpbid 232 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+)
3029rphalfcld 13020 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ+)
311, 30ltsubrpd 13040 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵)
322, 30ltsubrpd 13040 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)
33 oveq1 7401 . . . . 5 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐))
3433eqeq2d 2741 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = (𝑏 + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐)))
35 breq1 5118 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 < 𝐵 ↔ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵))
3634, 353anbi12d 1439 . . 3 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶)))
37 oveq2 7402 . . . . 5 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
3837eqeq2d 2741 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)))))
39 breq1 5118 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑐 < 𝐶 ↔ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶))
4038, 393anbi13d 1440 . . 3 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)))
4136, 40rspc2ev 3610 . 2 (((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
427, 8, 25, 31, 32, 41syl113anc 1384 1 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wrex 3055   class class class wbr 5115  (class class class)co 7394  cc 11084  cr 11085   + caddc 11089   < clt 11226  cmin 11423   / cdiv 11851  2c2 12252  +crp 12965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-rp 12966
This theorem is referenced by:  xlt2addrd  32690
  Copyright terms: Public domain W3C validator