Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt2addrd Structured version   Visualization version   GIF version

Theorem lt2addrd 30469
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
lt2addrd.1 (𝜑𝐴 ∈ ℝ)
lt2addrd.2 (𝜑𝐵 ∈ ℝ)
lt2addrd.3 (𝜑𝐶 ∈ ℝ)
lt2addrd.4 (𝜑𝐴 < (𝐵 + 𝐶))
Assertion
Ref Expression
lt2addrd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem lt2addrd
StepHypRef Expression
1 lt2addrd.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 lt2addrd.3 . . . . . 6 (𝜑𝐶 ∈ ℝ)
31, 2readdcld 10664 . . . . 5 (𝜑 → (𝐵 + 𝐶) ∈ ℝ)
4 lt2addrd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
53, 4resubcld 11062 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ)
65rehalfcld 11878 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ)
71, 6resubcld 11062 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
82, 6resubcld 11062 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ)
92recnd 10663 . . . . . 6 (𝜑𝐶 ∈ ℂ)
101recnd 10663 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1110, 9addcld 10654 . . . . . . . 8 (𝜑 → (𝐵 + 𝐶) ∈ ℂ)
124recnd 10663 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1311, 12subcld 10991 . . . . . . 7 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℂ)
1413halfcld 11876 . . . . . 6 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℂ)
159, 14, 14subsub4d 11022 . . . . 5 (𝜑 → ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2)) = (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
1615oveq2d 7166 . . . 4 (𝜑 → (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
179, 14subcld 10991 . . . . 5 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
1810, 14, 17subadd23d 11013 . . . 4 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + ((𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) − (((𝐵 + 𝐶) − 𝐴) / 2))))
19132halvesd 11877 . . . . . 6 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) = ((𝐵 + 𝐶) − 𝐴))
2019, 13eqeltrd 2913 . . . . 5 (𝜑 → ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℂ)
2110, 9, 20addsubassd 11011 . . . 4 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = (𝐵 + (𝐶 − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2)))))
2216, 18, 213eqtr4d 2866 . . 3 (𝜑 → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))))
2319oveq2d 7166 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((((𝐵 + 𝐶) − 𝐴) / 2) + (((𝐵 + 𝐶) − 𝐴) / 2))) = ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)))
2411, 12nncand 10996 . . 3 (𝜑 → ((𝐵 + 𝐶) − ((𝐵 + 𝐶) − 𝐴)) = 𝐴)
2522, 23, 243eqtrrd 2861 . 2 (𝜑𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
26 lt2addrd.4 . . . . 5 (𝜑𝐴 < (𝐵 + 𝐶))
27 difrp 12421 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
284, 3, 27syl2anc 586 . . . . 5 (𝜑 → (𝐴 < (𝐵 + 𝐶) ↔ ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+))
2926, 28mpbid 234 . . . 4 (𝜑 → ((𝐵 + 𝐶) − 𝐴) ∈ ℝ+)
3029rphalfcld 12437 . . 3 (𝜑 → (((𝐵 + 𝐶) − 𝐴) / 2) ∈ ℝ+)
311, 30ltsubrpd 12457 . 2 (𝜑 → (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵)
322, 30ltsubrpd 12457 . 2 (𝜑 → (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)
33 oveq1 7157 . . . . 5 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐))
3433eqeq2d 2832 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = (𝑏 + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐)))
35 breq1 5061 . . . 4 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑏 < 𝐵 ↔ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵))
3634, 353anbi12d 1433 . . 3 (𝑏 = (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶)))
37 oveq2 7158 . . . . 5 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))))
3837eqeq2d 2832 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ↔ 𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)))))
39 breq1 5061 . . . 4 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → (𝑐 < 𝐶 ↔ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶))
4038, 393anbi13d 1434 . . 3 (𝑐 = (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) → ((𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + 𝑐) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)))
4136, 40rspc2ev 3634 . 2 (((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) ∈ ℝ ∧ (𝐴 = ((𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) + (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2))) ∧ (𝐵 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐵 ∧ (𝐶 − (((𝐵 + 𝐶) − 𝐴) / 2)) < 𝐶)) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
427, 8, 25, 31, 32, 41syl113anc 1378 1 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530   + caddc 10534   < clt 10669  cmin 10864   / cdiv 11291  2c2 11686  +crp 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-rp 12384
This theorem is referenced by:  xlt2addrd  30476
  Copyright terms: Public domain W3C validator