Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfp1 Structured version   Visualization version   GIF version

Theorem ballotlemfp1 30334
Description: If the 𝐽 th ballot is for A, (𝐹𝐶) goes up 1. If the 𝐽 th ballot is for B, (𝐹𝐶) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotlemfp1.c (𝜑𝐶𝑂)
ballotlemfp1.j (𝜑𝐽 ∈ ℕ)
Assertion
Ref Expression
ballotlemfp1 (𝜑 → ((¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)) ∧ (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfp1
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 ballotlemfp1.c . . . . . 6 (𝜑𝐶𝑂)
7 ballotlemfp1.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
87nnzd 11425 . . . . . 6 (𝜑𝐽 ∈ ℤ)
91, 2, 3, 4, 5, 6, 8ballotlemfval 30332 . . . . 5 (𝜑 → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
109adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
11 fzfi 12711 . . . . . . . . . 10 (1...(𝐽 − 1)) ∈ Fin
12 inss1 3811 . . . . . . . . . 10 ((1...(𝐽 − 1)) ∩ 𝐶) ⊆ (1...(𝐽 − 1))
13 ssfi 8124 . . . . . . . . . 10 (((1...(𝐽 − 1)) ∈ Fin ∧ ((1...(𝐽 − 1)) ∩ 𝐶) ⊆ (1...(𝐽 − 1))) → ((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin)
1411, 12, 13mp2an 707 . . . . . . . . 9 ((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin
15 hashcl 13087 . . . . . . . . 9 (((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℕ0)
1614, 15ax-mp 5 . . . . . . . 8 (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℕ0
1716nn0cni 11248 . . . . . . 7 (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ
1817a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ)
19 diffi 8136 . . . . . . . . . 10 ((1...(𝐽 − 1)) ∈ Fin → ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin)
2011, 19ax-mp 5 . . . . . . . . 9 ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin
21 hashcl 13087 . . . . . . . . 9 (((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℕ0)
2220, 21ax-mp 5 . . . . . . . 8 (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℕ0
2322nn0cni 11248 . . . . . . 7 (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ
2423a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ)
25 1cnd 10000 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → 1 ∈ ℂ)
2618, 24, 25subsub4d 10367 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) − 1) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
27 1zzd 11352 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
288, 27zsubcld 11431 . . . . . . . 8 (𝜑 → (𝐽 − 1) ∈ ℤ)
291, 2, 3, 4, 5, 6, 28ballotlemfval 30332 . . . . . . 7 (𝜑 → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
3029adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
3130oveq1d 6619 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → (((𝐹𝐶)‘(𝐽 − 1)) − 1) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) − 1))
32 elnnuz 11668 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ 𝐽 ∈ (ℤ‘1))
337, 32sylib 208 . . . . . . . . . 10 (𝜑𝐽 ∈ (ℤ‘1))
34 fzspl 29392 . . . . . . . . . . . 12 (𝐽 ∈ (ℤ‘1) → (1...𝐽) = ((1...(𝐽 − 1)) ∪ {𝐽}))
3534ineq1d 3791 . . . . . . . . . . 11 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∪ {𝐽}) ∩ 𝐶))
36 indir 3851 . . . . . . . . . . 11 (((1...(𝐽 − 1)) ∪ {𝐽}) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))
3735, 36syl6eq 2671 . . . . . . . . . 10 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
3833, 37syl 17 . . . . . . . . 9 (𝜑 → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
3938adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
40 disjsn 4216 . . . . . . . . . . . 12 ((𝐶 ∩ {𝐽}) = ∅ ↔ ¬ 𝐽𝐶)
41 incom 3783 . . . . . . . . . . . . 13 (𝐶 ∩ {𝐽}) = ({𝐽} ∩ 𝐶)
4241eqeq1i 2626 . . . . . . . . . . . 12 ((𝐶 ∩ {𝐽}) = ∅ ↔ ({𝐽} ∩ 𝐶) = ∅)
4340, 42sylbb1 227 . . . . . . . . . . 11 𝐽𝐶 → ({𝐽} ∩ 𝐶) = ∅)
4443adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽𝐶) → ({𝐽} ∩ 𝐶) = ∅)
4544uneq2d 3745 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ∅))
46 un0 3939 . . . . . . . . 9 (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∩ 𝐶)
4745, 46syl6eq 2671 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = ((1...(𝐽 − 1)) ∩ 𝐶))
4839, 47eqtrd 2655 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∩ 𝐶) = ((1...(𝐽 − 1)) ∩ 𝐶))
4948fveq2d 6152 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = (#‘((1...(𝐽 − 1)) ∩ 𝐶)))
5034difeq1d 3705 . . . . . . . . . . 11 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∪ {𝐽}) ∖ 𝐶))
51 difundir 3856 . . . . . . . . . . 11 (((1...(𝐽 − 1)) ∪ {𝐽}) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))
5250, 51syl6eq 2671 . . . . . . . . . 10 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)))
5333, 52syl 17 . . . . . . . . 9 (𝜑 → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)))
54 disj3 3993 . . . . . . . . . . . 12 (({𝐽} ∩ 𝐶) = ∅ ↔ {𝐽} = ({𝐽} ∖ 𝐶))
5543, 54sylib 208 . . . . . . . . . . 11 𝐽𝐶 → {𝐽} = ({𝐽} ∖ 𝐶))
5655eqcomd 2627 . . . . . . . . . 10 𝐽𝐶 → ({𝐽} ∖ 𝐶) = {𝐽})
5756uneq2d 3745 . . . . . . . . 9 𝐽𝐶 → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽}))
5853, 57sylan9eq 2675 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽}))
5958fveq2d 6152 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})))
608adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → 𝐽 ∈ ℤ)
61 uzid 11646 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ (ℤ𝐽))
62 uznfz 12364 . . . . . . . . . . . 12 (𝐽 ∈ (ℤ𝐽) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
638, 61, 623syl 18 . . . . . . . . . . 11 (𝜑 → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
6463adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽𝐶) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
65 difss 3715 . . . . . . . . . . 11 ((1...(𝐽 − 1)) ∖ 𝐶) ⊆ (1...(𝐽 − 1))
6665sseli 3579 . . . . . . . . . 10 (𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶) → 𝐽 ∈ (1...(𝐽 − 1)))
6764, 66nsyl 135 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽𝐶) → ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶))
68 ssfi 8124 . . . . . . . . . 10 (((1...(𝐽 − 1)) ∈ Fin ∧ ((1...(𝐽 − 1)) ∖ 𝐶) ⊆ (1...(𝐽 − 1))) → ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin)
6911, 65, 68mp2an 707 . . . . . . . . 9 ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin
7067, 69jctil 559 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶)))
71 hashunsng 13121 . . . . . . . 8 (𝐽 ∈ ℤ → ((((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶)) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
7260, 70, 71sylc 65 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1))
7359, 72eqtrd 2655 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1))
7449, 73oveq12d 6622 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
7526, 31, 743eqtr4rd 2666 . . . 4 ((𝜑 ∧ ¬ 𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((𝐹𝐶)‘(𝐽 − 1)) − 1))
7610, 75eqtrd 2655 . . 3 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1))
7776ex 450 . 2 (𝜑 → (¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)))
789adantr 481 . . . 4 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
7917a1i 11 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ)
80 1cnd 10000 . . . . . 6 ((𝜑𝐽𝐶) → 1 ∈ ℂ)
8123a1i 11 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ)
8279, 80, 81addsubd 10357 . . . . 5 ((𝜑𝐽𝐶) → (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) + 1))
8338fveq2d 6152 . . . . . . . 8 (𝜑 → (#‘((1...𝐽) ∩ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))))
8483adantr 481 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))))
85 snssi 4308 . . . . . . . . . . 11 (𝐽𝐶 → {𝐽} ⊆ 𝐶)
86 df-ss 3569 . . . . . . . . . . 11 ({𝐽} ⊆ 𝐶 ↔ ({𝐽} ∩ 𝐶) = {𝐽})
8785, 86sylib 208 . . . . . . . . . 10 (𝐽𝐶 → ({𝐽} ∩ 𝐶) = {𝐽})
8887uneq2d 3745 . . . . . . . . 9 (𝐽𝐶 → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽}))
8988fveq2d 6152 . . . . . . . 8 (𝐽𝐶 → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})))
9089adantl 482 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})))
91 simpr 477 . . . . . . . 8 ((𝜑𝐽𝐶) → 𝐽𝐶)
928adantr 481 . . . . . . . . . . 11 ((𝜑𝐽𝐶) → 𝐽 ∈ ℤ)
9392, 61, 623syl 18 . . . . . . . . . 10 ((𝜑𝐽𝐶) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
9412sseli 3579 . . . . . . . . . 10 (𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶) → 𝐽 ∈ (1...(𝐽 − 1)))
9593, 94nsyl 135 . . . . . . . . 9 ((𝜑𝐽𝐶) → ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶))
9695, 14jctil 559 . . . . . . . 8 ((𝜑𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶)))
97 hashunsng 13121 . . . . . . . 8 (𝐽𝐶 → ((((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶)) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1)))
9891, 96, 97sylc 65 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1))
9984, 90, 983eqtrd 2659 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1))
10053fveq2d 6152 . . . . . . . 8 (𝜑 → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))))
101100adantr 481 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))))
102 difin2 3866 . . . . . . . . . . . 12 ({𝐽} ⊆ 𝐶 → ({𝐽} ∖ 𝐶) = ((𝐶𝐶) ∩ {𝐽}))
103 difid 3922 . . . . . . . . . . . . . 14 (𝐶𝐶) = ∅
104103ineq1i 3788 . . . . . . . . . . . . 13 ((𝐶𝐶) ∩ {𝐽}) = (∅ ∩ {𝐽})
105 0in 3941 . . . . . . . . . . . . 13 (∅ ∩ {𝐽}) = ∅
106104, 105eqtri 2643 . . . . . . . . . . . 12 ((𝐶𝐶) ∩ {𝐽}) = ∅
107102, 106syl6eq 2671 . . . . . . . . . . 11 ({𝐽} ⊆ 𝐶 → ({𝐽} ∖ 𝐶) = ∅)
10885, 107syl 17 . . . . . . . . . 10 (𝐽𝐶 → ({𝐽} ∖ 𝐶) = ∅)
109108uneq2d 3745 . . . . . . . . 9 (𝐽𝐶 → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅))
110109fveq2d 6152 . . . . . . . 8 (𝐽𝐶 → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)))
111110adantl 482 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)))
112 un0 3939 . . . . . . . . 9 (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∖ 𝐶)
113112a1i 11 . . . . . . . 8 ((𝜑𝐽𝐶) → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∖ 𝐶))
114113fveq2d 6152 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)) = (#‘((1...(𝐽 − 1)) ∖ 𝐶)))
115101, 111, 1143eqtrd 2659 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘((1...(𝐽 − 1)) ∖ 𝐶)))
11699, 115oveq12d 6622 . . . . 5 ((𝜑𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
11729adantr 481 . . . . . 6 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
118117oveq1d 6619 . . . . 5 ((𝜑𝐽𝐶) → (((𝐹𝐶)‘(𝐽 − 1)) + 1) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) + 1))
11982, 116, 1183eqtr4d 2665 . . . 4 ((𝜑𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))
12078, 119eqtrd 2655 . . 3 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))
121120ex 450 . 2 (𝜑 → (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1)))
12277, 121jca 554 1 (𝜑 → ((¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)) ∧ (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  cdif 3552  cun 3553  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  cmpt 4673  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  1c1 9881   + caddc 9883  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058
This theorem is referenced by:  ballotlemfc0  30335  ballotlemfcc  30336  ballotlem4  30341  ballotlemi1  30345  ballotlemii  30346  ballotlemic  30349  ballotlem1c  30350
  Copyright terms: Public domain W3C validator