MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnv Structured version   Visualization version   GIF version

Theorem pi1xfrcnv 23661
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnv (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
2 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
3 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
4 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
5 pi1xfr.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 pi1xfr.f . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1xfr.i . . . 4 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
8 pi1xfrcnv.h . . . 4 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
91, 2, 3, 4, 5, 6, 7, 8pi1xfrcnvlem 23660 . . 3 (𝜑𝐺𝐻)
10 fvex 6683 . . . . . . . 8 ( ≃ph𝐽) ∈ V
11 ecexg 8293 . . . . . . . 8 (( ≃ph𝐽) ∈ V → []( ≃ph𝐽) ∈ V)
1210, 11mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → []( ≃ph𝐽) ∈ V)
13 ecexg 8293 . . . . . . . 8 (( ≃ph𝐽) ∈ V → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
1410, 13mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
158, 12, 14fliftrel 7061 . . . . . 6 (𝜑𝐻 ⊆ (V × V))
16 df-rel 5562 . . . . . 6 (Rel 𝐻𝐻 ⊆ (V × V))
1715, 16sylibr 236 . . . . 5 (𝜑 → Rel 𝐻)
18 dfrel2 6046 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
1917, 18sylib 220 . . . 4 (𝜑𝐻 = 𝐻)
20 0elunit 12856 . . . . . . . . . 10 0 ∈ (0[,]1)
21 oveq2 7164 . . . . . . . . . . . . 13 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
22 1m0e1 11759 . . . . . . . . . . . . 13 (1 − 0) = 1
2321, 22syl6eq 2872 . . . . . . . . . . . 12 (𝑥 = 0 → (1 − 𝑥) = 1)
2423fveq2d 6674 . . . . . . . . . . 11 (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1))
25 fvex 6683 . . . . . . . . . . 11 (𝐹‘1) ∈ V
2624, 7, 25fvmpt 6768 . . . . . . . . . 10 (0 ∈ (0[,]1) → (𝐼‘0) = (𝐹‘1))
2720, 26ax-mp 5 . . . . . . . . 9 (𝐼‘0) = (𝐹‘1)
2827oveq2i 7167 . . . . . . . 8 (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1))
292, 28eqtr4i 2847 . . . . . . 7 𝑄 = (𝐽 π1 (𝐼‘0))
30 1elunit 12857 . . . . . . . . . 10 1 ∈ (0[,]1)
31 oveq2 7164 . . . . . . . . . . . . 13 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
3231fveq2d 6674 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1)))
33 1m1e0 11710 . . . . . . . . . . . . 13 (1 − 1) = 0
3433fveq2i 6673 . . . . . . . . . . . 12 (𝐹‘(1 − 1)) = (𝐹‘0)
3532, 34syl6eq 2872 . . . . . . . . . . 11 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0))
36 fvex 6683 . . . . . . . . . . 11 (𝐹‘0) ∈ V
3735, 7, 36fvmpt 6768 . . . . . . . . . 10 (1 ∈ (0[,]1) → (𝐼‘1) = (𝐹‘0))
3830, 37ax-mp 5 . . . . . . . . 9 (𝐼‘1) = (𝐹‘0)
3938oveq2i 7167 . . . . . . . 8 (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0))
401, 39eqtr4i 2847 . . . . . . 7 𝑃 = (𝐽 π1 (𝐼‘1))
41 eqid 2821 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
42 eqid 2821 . . . . . . 7 ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
437pcorevcl 23629 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
446, 43syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
4544simp1d 1138 . . . . . . 7 (𝜑𝐼 ∈ (II Cn 𝐽))
46 oveq2 7164 . . . . . . . . 9 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
4746fveq2d 6674 . . . . . . . 8 (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦)))
4847cbvmptv 5169 . . . . . . 7 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦)))
49 eqid 2821 . . . . . . 7 ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
5029, 40, 41, 42, 5, 45, 48, 49pi1xfrcnvlem 23660 . . . . . 6 (𝜑ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ⊆ ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
51 iitopon 23487 . . . . . . . . . . . . . . . 16 II ∈ (TopOn‘(0[,]1))
52 cnf2 21857 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
5351, 5, 6, 52mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝜑𝐹:(0[,]1)⟶𝑋)
5453feqmptd 6733 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧)))
55 iirev 23533 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − 𝑧) ∈ (0[,]1))
56 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧)))
5756fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧))))
58 fvex 6683 . . . . . . . . . . . . . . . . . 18 (𝐹‘(1 − (1 − 𝑧))) ∈ V
5957, 7, 58fvmpt 6768 . . . . . . . . . . . . . . . . 17 ((1 − 𝑧) ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
6055, 59syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
61 ax-1cn 10595 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
62 unitssre 12886 . . . . . . . . . . . . . . . . . . . 20 (0[,]1) ⊆ ℝ
6362sseli 3963 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
6463recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℂ)
65 nncan 10915 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧)
6661, 64, 65sylancr 589 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − (1 − 𝑧)) = 𝑧)
6766fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑧))) = (𝐹𝑧))
6860, 67eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹𝑧))
6968mpteq2ia 5157 . . . . . . . . . . . . . 14 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧))
7054, 69syl6eqr 2874 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))
7170oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼)))
7271eceq1d 8328 . . . . . . . . . . 11 (𝜑 → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽))
7372opeq2d 4810 . . . . . . . . . 10 (𝜑 → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
7473mpteq2dv 5162 . . . . . . . . 9 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7574rneqd 5808 . . . . . . . 8 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
768, 75syl5eq 2868 . . . . . . 7 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7776cnveqd 5746 . . . . . 6 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
783a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑃))
7978unieqd 4852 . . . . . . . . 9 (𝜑 𝐵 = (Base‘𝑃))
8070oveq2d 7172 . . . . . . . . . . . 12 (𝜑 → (𝑔(*𝑝𝐽)𝐹) = (𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))
8180oveq2d 7172 . . . . . . . . . . 11 (𝜑 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))))
8281eceq1d 8328 . . . . . . . . . 10 (𝜑 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽))
8382opeq2d 4810 . . . . . . . . 9 (𝜑 → ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩ = ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
8479, 83mpteq12dv 5151 . . . . . . . 8 (𝜑 → (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8584rneqd 5808 . . . . . . 7 (𝜑 → ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
864, 85syl5eq 2868 . . . . . 6 (𝜑𝐺 = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8750, 77, 863sstr4d 4014 . . . . 5 (𝜑𝐻𝐺)
88 cnvss 5743 . . . . 5 (𝐻𝐺𝐻𝐺)
8987, 88syl 17 . . . 4 (𝜑𝐻𝐺)
9019, 89eqsstrrd 4006 . . 3 (𝜑𝐻𝐺)
919, 90eqssd 3984 . 2 (𝜑𝐺 = 𝐻)
9291, 76eqtrd 2856 . . 3 (𝜑𝐺 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
9329, 40, 41, 42, 5, 45, 48pi1xfr 23659 . . 3 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∈ (𝑄 GrpHom 𝑃))
9492, 93eqeltrd 2913 . 2 (𝜑𝐺 ∈ (𝑄 GrpHom 𝑃))
9591, 94jca 514 1 (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  cop 4573   cuni 4838  cmpt 5146   × cxp 5553  ccnv 5554  ran crn 5556  Rel wrel 5560  wf 6351  cfv 6355  (class class class)co 7156  [cec 8287  cc 10535  cr 10536  0cc0 10537  1c1 10538  cmin 10870  [,]cicc 12742  Basecbs 16483   GrpHom cghm 18355  TopOnctopon 21518   Cn ccn 21832  IIcii 23483  phcphtpc 23573  *𝑝cpco 23604   π1 cpi1 23607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-qus 16782  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-mulg 18225  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-ii 23485  df-htpy 23574  df-phtpy 23575  df-phtpc 23596  df-pco 23609  df-om1 23610  df-pi1 23612
This theorem is referenced by:  pi1xfrgim  23662
  Copyright terms: Public domain W3C validator