MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipsubdir Structured version   Visualization version   GIF version

Theorem dipsubdir 27570
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipsubdir.1 𝑋 = (BaseSet‘𝑈)
ipsubdir.3 𝑀 = ( −𝑣𝑈)
ipsubdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipsubdir ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))

Proof of Theorem dipsubdir
StepHypRef Expression
1 idd 24 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐴𝑋𝐴𝑋))
2 phnv 27536 . . . . . . 7 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
3 neg1cn 11075 . . . . . . . 8 -1 ∈ ℂ
4 ipsubdir.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
5 eqid 2621 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
64, 5nvscl 27348 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
73, 6mp3an2 1409 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
82, 7sylan 488 . . . . . 6 ((𝑈 ∈ CPreHilOLD𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
98ex 450 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐵𝑋 → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋))
10 idd 24 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝐶𝑋𝐶𝑋))
111, 9, 103anim123d 1403 . . . 4 (𝑈 ∈ CPreHilOLD → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋)))
1211imp 445 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋))
13 eqid 2621 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
14 ipsubdir.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
154, 13, 14dipdir 27564 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋𝐶𝑋)) → ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
1612, 15syldan 487 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
17 ipsubdir.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
184, 13, 5, 17nvmval 27364 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
192, 18syl3an1 1356 . . . 4 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
20193adant3r3 1273 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
2120oveq1d 6625 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))𝑃𝐶))
224, 5, 14dipass 27567 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (-1 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶)))
233, 22mp3anr1 1418 . . . . . 6 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = (-1 · (𝐵𝑃𝐶)))
244, 14dipcl 27434 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑃𝐶) ∈ ℂ)
25243expb 1263 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
262, 25sylan 488 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
2726mulm1d 10433 . . . . . 6 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → (-1 · (𝐵𝑃𝐶)) = -(𝐵𝑃𝐶))
2823, 27eqtrd 2655 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶))
29283adantr1 1218 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶) = -(𝐵𝑃𝐶))
3029oveq2d 6626 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)) = ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)))
314, 14dipcl 27434 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
32313adant3r2 1272 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃𝐶) ∈ ℂ)
33243adant3r1 1271 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝑃𝐶) ∈ ℂ)
3432, 33negsubd 10349 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
352, 34sylan 488 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) + -(𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
3630, 35eqtr2d 2656 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)) = ((𝐴𝑃𝐶) + ((-1( ·𝑠OLD𝑈)𝐵)𝑃𝐶)))
3716, 21, 363eqtr4d 2665 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  cc 9885  1c1 9888   + caddc 9890   · cmul 9892  cmin 10217  -cneg 10218  NrmCVeccnv 27306   +𝑣 cpv 27307  BaseSetcba 27308   ·𝑠OLD cns 27309  𝑣 cnsb 27311  ·𝑖OLDcdip 27422  CPreHilOLDccphlo 27534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-cn 20950  df-cnp 20951  df-t1 21037  df-haus 21038  df-tx 21284  df-hmeo 21477  df-xms 22044  df-ms 22045  df-tms 22046  df-grpo 27214  df-gid 27215  df-ginv 27216  df-gdiv 27217  df-ablo 27266  df-vc 27281  df-nv 27314  df-va 27317  df-ba 27318  df-sm 27319  df-0v 27320  df-vs 27321  df-nmcv 27322  df-ims 27323  df-dip 27423  df-ph 27535
This theorem is referenced by:  dipsubdi  27571  siilem1  27573
  Copyright terms: Public domain W3C validator