MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efexp Structured version   Visualization version   GIF version

Theorem efexp 14616
Description: Exponential function to an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))

Proof of Theorem efexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11215 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 mulcom 9878 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
31, 2sylan2 489 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
43fveq2d 6092 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = (exp‘(𝑁 · 𝐴)))
5 oveq2 6535 . . . . . 6 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
65fveq2d 6092 . . . . 5 (𝑗 = 0 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 0)))
7 oveq2 6535 . . . . 5 (𝑗 = 0 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑0))
86, 7eqeq12d 2624 . . . 4 (𝑗 = 0 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0)))
9 oveq2 6535 . . . . . 6 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
109fveq2d 6092 . . . . 5 (𝑗 = 𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑘)))
11 oveq2 6535 . . . . 5 (𝑗 = 𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑘))
1210, 11eqeq12d 2624 . . . 4 (𝑗 = 𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)))
13 oveq2 6535 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1413fveq2d 6092 . . . . 5 (𝑗 = (𝑘 + 1) → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · (𝑘 + 1))))
15 oveq2 6535 . . . . 5 (𝑗 = (𝑘 + 1) → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑(𝑘 + 1)))
1614, 15eqeq12d 2624 . . . 4 (𝑗 = (𝑘 + 1) → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1))))
17 oveq2 6535 . . . . . 6 (𝑗 = -𝑘 → (𝐴 · 𝑗) = (𝐴 · -𝑘))
1817fveq2d 6092 . . . . 5 (𝑗 = -𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · -𝑘)))
19 oveq2 6535 . . . . 5 (𝑗 = -𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑-𝑘))
2018, 19eqeq12d 2624 . . . 4 (𝑗 = -𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
21 oveq2 6535 . . . . . 6 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
2221fveq2d 6092 . . . . 5 (𝑗 = 𝑁 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑁)))
23 oveq2 6535 . . . . 5 (𝑗 = 𝑁 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑁))
2422, 23eqeq12d 2624 . . . 4 (𝑗 = 𝑁 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
25 ef0 14606 . . . . 5 (exp‘0) = 1
26 mul01 10066 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2726fveq2d 6092 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = (exp‘0))
28 efcl 14598 . . . . . 6 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2928exp0d 12819 . . . . 5 (𝐴 ∈ ℂ → ((exp‘𝐴)↑0) = 1)
3025, 27, 293eqtr4a 2669 . . . 4 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0))
31 oveq1 6534 . . . . . . 7 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
3231adantl 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
33 nn0cn 11149 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
34 ax-1cn 9850 . . . . . . . . . . . 12 1 ∈ ℂ
35 adddi 9881 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
3634, 35mp3an3 1404 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
37 mulid1 9893 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3837adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
3938oveq2d 6543 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
4036, 39eqtrd 2643 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4133, 40sylan2 489 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4241fveq2d 6092 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = (exp‘((𝐴 · 𝑘) + 𝐴)))
43 mulcl 9876 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
4433, 43sylan2 489 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℂ)
45 simpl 471 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
46 efadd 14609 . . . . . . . . 9 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4744, 45, 46syl2anc 690 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4842, 47eqtrd 2643 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4948adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
50 expp1 12684 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5128, 50sylan 486 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5251adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5332, 49, 523eqtr4d 2653 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))
5453exp31 627 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))))
55 oveq2 6535 . . . . . 6 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘)))
56 nncn 10875 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
57 mulneg2 10318 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5856, 57sylan2 489 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5958fveq2d 6092 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (exp‘-(𝐴 · 𝑘)))
6056, 43sylan2 489 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
61 efneg 14613 . . . . . . . . 9 ((𝐴 · 𝑘) ∈ ℂ → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6260, 61syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6359, 62eqtrd 2643 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
64 nnnn0 11146 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expneg 12685 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6628, 64, 65syl2an 492 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6763, 66eqeq12d 2624 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘) ↔ (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘))))
6855, 67syl5ibr 234 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
6968ex 448 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘))))
708, 12, 16, 20, 24, 30, 54, 69zindd 11310 . . 3 (𝐴 ∈ ℂ → (𝑁 ∈ ℤ → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
7170imp 443 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁))
724, 71eqtr3d 2645 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  cc 9790  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  -cneg 10118   / cdiv 10533  cn 10867  0cn0 11139  cz 11210  cexp 12677  expce 14577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ico 12008  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583
This theorem is referenced by:  efzval  14617  efgt0  14618  tanval3  14649  demoivre  14715  ef2kpi  23951  efif1olem4  24012  explog  24061  reexplog  24062  relogexp  24063  tanarg  24086  root1eq1  24213
  Copyright terms: Public domain W3C validator