MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1eq1 Structured version   Visualization version   GIF version

Theorem root1eq1 24616
Description: The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
root1eq1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))

Proof of Theorem root1eq1
StepHypRef Expression
1 2re 11203 . . . . . . . 8 2 ∈ ℝ
2 simpl 474 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
3 nndivre 11169 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
41, 2, 3sylancr 698 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
54recnd 10181 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
6 ax-icn 10108 . . . . . . . 8 i ∈ ℂ
7 picn 24331 . . . . . . . 8 π ∈ ℂ
86, 7mulcli 10158 . . . . . . 7 (i · π) ∈ ℂ
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (i · π) ∈ ℂ)
105, 9mulcld 10173 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((2 / 𝑁) · (i · π)) ∈ ℂ)
11 efexp 14951 . . . . 5 ((((2 / 𝑁) · (i · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
1210, 11sylancom 704 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
13 zcn 11495 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 nncn 11141 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
17 2cn 11204 . . . . . . . . 9 2 ∈ ℂ
1817a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 2 ∈ ℂ)
19 nnne0 11166 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ≠ 0)
2114, 16, 18, 20div32d 10937 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · 2) = (𝐾 · (2 / 𝑁)))
2221oveq1d 6780 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 · (2 / 𝑁)) · (i · π)))
2314, 16, 20divcld 10914 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾 / 𝑁) ∈ ℂ)
2423, 18, 9mulassd 10176 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 / 𝑁) · (2 · (i · π))))
2514, 5, 9mulassd 10176 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 · (2 / 𝑁)) · (i · π)) = (𝐾 · ((2 / 𝑁) · (i · π))))
2622, 24, 253eqtr3d 2766 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) = (𝐾 · ((2 / 𝑁) · (i · π))))
2726fveq2d 6308 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))))
28 neg1cn 11237 . . . . . . . 8 -1 ∈ ℂ
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
30 neg1ne0 11239 . . . . . . . 8 -1 ≠ 0
3130a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
3229, 31, 5cxpefd 24578 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (log‘-1))))
33 logm1 24455 . . . . . . . 8 (log‘-1) = (i · π)
3433oveq2i 6776 . . . . . . 7 ((2 / 𝑁) · (log‘-1)) = ((2 / 𝑁) · (i · π))
3534fveq2i 6307 . . . . . 6 (exp‘((2 / 𝑁) · (log‘-1))) = (exp‘((2 / 𝑁) · (i · π)))
3632, 35syl6eq 2774 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (i · π))))
3736oveq1d 6780 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
3812, 27, 373eqtr4rd 2769 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = (exp‘((𝐾 / 𝑁) · (2 · (i · π)))))
3938eqeq1d 2726 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1))
4017, 8mulcli 10158 . . . 4 (2 · (i · π)) ∈ ℂ
41 mulcl 10133 . . . 4 (((𝐾 / 𝑁) ∈ ℂ ∧ (2 · (i · π)) ∈ ℂ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
4223, 40, 41sylancl 697 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
43 efeq1 24395 . . 3 (((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
4442, 43syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
456, 17, 7mul12i 10344 . . . . . 6 (i · (2 · π)) = (2 · (i · π))
4645oveq2i 6776 . . . . 5 (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π)))
4740a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ∈ ℂ)
48 2ne0 11226 . . . . . . . 8 2 ≠ 0
49 ine0 10578 . . . . . . . . 9 i ≠ 0
50 pire 24330 . . . . . . . . . 10 π ∈ ℝ
51 pipos 24332 . . . . . . . . . 10 0 < π
5250, 51gt0ne0ii 10677 . . . . . . . . 9 π ≠ 0
536, 7, 49, 52mulne0i 10783 . . . . . . . 8 (i · π) ≠ 0
5417, 8, 48, 53mulne0i 10783 . . . . . . 7 (2 · (i · π)) ≠ 0
5554a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ≠ 0)
5623, 47, 55divcan4d 10920 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π))) = (𝐾 / 𝑁))
5746, 56syl5eq 2770 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (𝐾 / 𝑁))
5857eleq1d 2788 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ (𝐾 / 𝑁) ∈ ℤ))
59 nnz 11512 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6059adantr 472 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
61 simpr 479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
62 dvdsval2 15106 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6360, 20, 61, 62syl3anc 1439 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6458, 63bitr4d 271 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ 𝑁𝐾))
6539, 44, 643bitrd 294 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050  ici 10051   · cmul 10054  -cneg 10380   / cdiv 10797  cn 11133  2c2 11183  cz 11490  cexp 12975  expce 14912  πcpi 14917  cdvds 15103  logclog 24421  𝑐ccxp 24422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-dvds 15104  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-cxp 24424
This theorem is referenced by:  dchrptlem1  25109  dchrptlem2  25110
  Copyright terms: Public domain W3C validator