Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsup Structured version   Visualization version   GIF version

Theorem esumsup 30456
Description: Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
esumsup.1 (𝜑𝐵 ∈ (0[,]+∞))
esumsup.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsup (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumsup
StepHypRef Expression
1 esumsup.2 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
2 eqid 2756 . . . 4 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
31, 2fmptd 6544 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞))
4 nfmpt1 4895 . . . 4 𝑘(𝑘 ∈ ℕ ↦ 𝐴)
54esumfsup 30437 . . 3 ((𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ))
63, 5syl 17 . 2 (𝜑 → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ))
7 simpr 479 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
82fvmpt2 6449 . . . 4 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ (0[,]+∞)) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
97, 1, 8syl2anc 696 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
109esumeq2dv 30405 . 2 (𝜑 → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = Σ*𝑘 ∈ ℕ𝐴)
11 1z 11595 . . . . . . . . 9 1 ∈ ℤ
12 seqfn 13003 . . . . . . . . 9 (1 ∈ ℤ → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1))
1311, 12ax-mp 5 . . . . . . . 8 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1)
14 nnuz 11912 . . . . . . . . 9 ℕ = (ℤ‘1)
1514fneq2i 6143 . . . . . . . 8 (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ ↔ seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1))
1613, 15mpbir 221 . . . . . . 7 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ
17 nfcv 2898 . . . . . . . 8 𝑛seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))
1817dffn5f 6410 . . . . . . 7 (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ ↔ seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
1916, 18mpbi 220 . . . . . 6 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
2019a1i 11 . . . . 5 (𝜑 → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
21 fz1ssnn 12561 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
2322sselda 3740 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
24 simpll 807 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
2524, 23, 1syl2anc 696 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
2623, 25, 8syl2anc 696 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
2726esumeq2dv 30405 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = Σ*𝑘 ∈ (1...𝑛)𝐴)
284esumfzf 30436 . . . . . . . 8 (((𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
293, 28sylan 489 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
3027, 29eqtr3d 2792 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
3130mpteq2dva 4892 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
3220, 31eqtr4d 2793 . . . 4 (𝜑 → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
3332rneqd 5504 . . 3 (𝜑 → ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
3433supeq1d 8513 . 2 (𝜑 → sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
356, 10, 343eqtr3d 2798 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1628  wcel 2135  wss 3711  cmpt 4877  ran crn 5263   Fn wfn 6040  wf 6041  cfv 6045  (class class class)co 6809  supcsup 8507  0cc0 10124  1c1 10125  +∞cpnf 10259  *cxr 10261   < clt 10262  cn 11208  cz 11565  cuz 11875   +𝑒 cxad 12133  [,]cicc 12367  ...cfz 12515  seqcseq 12991  Σ*cesum 30394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-of 7058  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-fi 8478  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-ioo 12368  df-ioc 12369  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051  df-fac 13251  df-bc 13280  df-hash 13308  df-shft 14002  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612  df-ef 14993  df-sin 14995  df-cos 14996  df-pi 14998  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-starv 16154  df-sca 16155  df-vsca 16156  df-ip 16157  df-tset 16158  df-ple 16159  df-ds 16162  df-unif 16163  df-hom 16164  df-cco 16165  df-rest 16281  df-topn 16282  df-0g 16300  df-gsum 16301  df-topgen 16302  df-pt 16303  df-prds 16306  df-ordt 16359  df-xrs 16360  df-qtop 16365  df-imas 16366  df-xps 16368  df-mre 16444  df-mrc 16445  df-acs 16447  df-ps 17397  df-tsr 17398  df-plusf 17438  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-mhm 17532  df-submnd 17533  df-grp 17622  df-minusg 17623  df-sbg 17624  df-mulg 17738  df-subg 17788  df-cntz 17946  df-cmn 18391  df-abl 18392  df-mgp 18686  df-ur 18698  df-ring 18745  df-cring 18746  df-subrg 18976  df-abv 19015  df-lmod 19063  df-scaf 19064  df-sra 19370  df-rgmod 19371  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-fbas 19941  df-fg 19942  df-cnfld 19945  df-top 20897  df-topon 20914  df-topsp 20935  df-bases 20948  df-cld 21021  df-ntr 21022  df-cls 21023  df-nei 21100  df-lp 21138  df-perf 21139  df-cn 21229  df-cnp 21230  df-haus 21317  df-tx 21563  df-hmeo 21756  df-fil 21847  df-fm 21939  df-flim 21940  df-flf 21941  df-tmd 22073  df-tgp 22074  df-tsms 22127  df-trg 22160  df-xms 22322  df-ms 22323  df-tms 22324  df-nm 22584  df-ngp 22585  df-nrg 22587  df-nlm 22588  df-ii 22877  df-cncf 22878  df-limc 23825  df-dv 23826  df-log 24498  df-esum 30395
This theorem is referenced by:  esumgect  30457
  Copyright terms: Public domain W3C validator