Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1g Structured version   Visualization version   GIF version

Theorem fta1g 23844
 Description: The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 24719, which is only true in ℂ and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1g.3 (𝜑𝐹0 )
Assertion
Ref Expression
fta1g (𝜑 → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))

Proof of Theorem fta1g
Dummy variables 𝑓 𝑑 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (𝐷𝐹) = (𝐷𝐹)
2 fta1g.2 . . 3 (𝜑𝐹𝐵)
3 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
4 isidom 19232 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
54simplbi 476 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
6 crngring 18486 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
73, 5, 63syl 18 . . . . 5 (𝜑𝑅 ∈ Ring)
8 fta1g.3 . . . . 5 (𝜑𝐹0 )
9 fta1g.d . . . . . 6 𝐷 = ( deg1𝑅)
10 fta1g.p . . . . . 6 𝑃 = (Poly1𝑅)
11 fta1g.z . . . . . 6 0 = (0g𝑃)
12 fta1g.b . . . . . 6 𝐵 = (Base‘𝑃)
139, 10, 11, 12deg1nn0cl 23765 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
147, 2, 8, 13syl3anc 1323 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
15 eqeq2 2632 . . . . . . . 8 (𝑥 = 0 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 0))
1615imbi1d 331 . . . . . . 7 (𝑥 = 0 → (((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 0 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
1716ralbidv 2981 . . . . . 6 (𝑥 = 0 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 0 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
1817imbi2d 330 . . . . 5 (𝑥 = 0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
19 eqeq2 2632 . . . . . . . 8 (𝑥 = 𝑑 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 𝑑))
2019imbi1d 331 . . . . . . 7 (𝑥 = 𝑑 → (((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2120ralbidv 2981 . . . . . 6 (𝑥 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2221imbi2d 330 . . . . 5 (𝑥 = 𝑑 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
23 eqeq2 2632 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝑑 + 1)))
2423imbi1d 331 . . . . . . 7 (𝑥 = (𝑑 + 1) → (((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2524ralbidv 2981 . . . . . 6 (𝑥 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2625imbi2d 330 . . . . 5 (𝑥 = (𝑑 + 1) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
27 eqeq2 2632 . . . . . . . 8 (𝑥 = (𝐷𝐹) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝐷𝐹)))
2827imbi1d 331 . . . . . . 7 (𝑥 = (𝐷𝐹) → (((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2928ralbidv 2981 . . . . . 6 (𝑥 = (𝐷𝐹) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3029imbi2d 330 . . . . 5 (𝑥 = (𝐷𝐹) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
31 simprr 795 . . . . . . . . . . . . . 14 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) = 0)
32 0nn0 11258 . . . . . . . . . . . . . 14 0 ∈ ℕ0
3331, 32syl6eqel 2706 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) ∈ ℕ0)
345, 6syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
35 simpl 473 . . . . . . . . . . . . . 14 ((𝑓𝐵 ∧ (𝐷𝑓) = 0) → 𝑓𝐵)
369, 10, 11, 12deg1nn0clb 23767 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
3734, 35, 36syl2an 494 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
3833, 37mpbird 247 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓0 )
39 simplrr 800 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) = 0)
40 0le0 11061 . . . . . . . . . . . . . . . . 17 0 ≤ 0
4139, 40syl6eqbr 4657 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) ≤ 0)
4234ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ Ring)
43 simplrl 799 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓𝐵)
44 eqid 2621 . . . . . . . . . . . . . . . . . 18 (algSc‘𝑃) = (algSc‘𝑃)
459, 10, 12, 44deg1le0 23788 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
4642, 43, 45syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
4741, 46mpbid 222 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0)))
4847fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))))
495adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ CRing)
5049adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ CRing)
51 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑓) = (coe1𝑓)
52 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
5351, 12, 10, 52coe1f 19509 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐵 → (coe1𝑓):ℕ0⟶(Base‘𝑅))
5443, 53syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (coe1𝑓):ℕ0⟶(Base‘𝑅))
55 ffvelrn 6318 . . . . . . . . . . . . . . . . . . . . 21 (((coe1𝑓):ℕ0⟶(Base‘𝑅) ∧ 0 ∈ ℕ0) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
5654, 32, 55sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
57 fta1g.o . . . . . . . . . . . . . . . . . . . . 21 𝑂 = (eval1𝑅)
5857, 10, 52, 44evl1sca 19626 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ CRing ∧ ((coe1𝑓)‘0) ∈ (Base‘𝑅)) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
5950, 56, 58syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6048, 59eqtrd 2655 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6160fveq1d 6155 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥))
62 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
63 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
64 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ IDomn)
65 fvex 6163 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) ∈ V
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (Base‘𝑅) ∈ V)
6757, 10, 62, 52evl1rhm 19624 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))))
6812, 63rhmf 18654 . . . . . . . . . . . . . . . . . . . . . 22 (𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
6949, 67, 683syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
70 simprl 793 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓𝐵)
7169, 70ffvelrnd 6321 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓) ∈ (Base‘(𝑅s (Base‘𝑅))))
7262, 52, 63, 64, 66, 71pwselbas 16077 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅))
73 ffn 6007 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅) → (𝑂𝑓) Fn (Base‘𝑅))
74 fniniseg 6299 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓) Fn (Base‘𝑅) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
7572, 73, 743syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
7675simplbda 653 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = 𝑊)
7775simprbda 652 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑥 ∈ (Base‘𝑅))
78 fvex 6163 . . . . . . . . . . . . . . . . . . 19 ((coe1𝑓)‘0) ∈ V
7978fvconst2 6429 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (Base‘𝑅) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8077, 79syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8161, 76, 803eqtr3rd 2664 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) = 𝑊)
8281fveq2d 6157 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘((coe1𝑓)‘0)) = ((algSc‘𝑃)‘𝑊))
83 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
8410, 44, 83, 11ply1scl0 19588 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → ((algSc‘𝑃)‘𝑊) = 0 )
8542, 84syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘𝑊) = 0 )
8647, 82, 853eqtrd 2659 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = 0 )
8786ex 450 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → 𝑓 = 0 ))
8887necon3ad 2803 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})))
8938, 88mpd 15 . . . . . . . . . . 11 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
9089eq0rdv 3956 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ((𝑂𝑓) “ {𝑊}) = ∅)
9190fveq2d 6157 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (#‘((𝑂𝑓) “ {𝑊})) = (#‘∅))
92 hash0 13105 . . . . . . . . 9 (#‘∅) = 0
9391, 92syl6eq 2671 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (#‘((𝑂𝑓) “ {𝑊})) = 0)
9440, 31syl5breqr 4656 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 0 ≤ (𝐷𝑓))
9593, 94eqbrtrd 4640 . . . . . . 7 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
9695expr 642 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑓𝐵) → ((𝐷𝑓) = 0 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
9796ralrimiva 2961 . . . . 5 (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
98 fveq2 6153 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝐷𝑓) = (𝐷𝑔))
9998eqeq1d 2623 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐷𝑓) = 𝑑 ↔ (𝐷𝑔) = 𝑑))
100 fveq2 6153 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑂𝑓) = (𝑂𝑔))
101100cnveqd 5263 . . . . . . . . . . . . 13 (𝑓 = 𝑔(𝑂𝑓) = (𝑂𝑔))
102101imaeq1d 5429 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝑔) “ {𝑊}))
103102fveq2d 6157 . . . . . . . . . . 11 (𝑓 = 𝑔 → (#‘((𝑂𝑓) “ {𝑊})) = (#‘((𝑂𝑔) “ {𝑊})))
104103, 98breq12d 4631 . . . . . . . . . 10 (𝑓 = 𝑔 → ((#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
10599, 104imbi12d 334 . . . . . . . . 9 (𝑓 = 𝑔 → (((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔))))
106105cbvralv 3162 . . . . . . . 8 (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
107 simprr 795 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) = (𝑑 + 1))
108 peano2nn0 11284 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
109108ad2antlr 762 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑑 + 1) ∈ ℕ0)
110107, 109eqeltrd 2698 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) ∈ ℕ0)
111110nn0ge0d 11305 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → 0 ≤ (𝐷𝑓))
112 fveq2 6153 . . . . . . . . . . . . . . . 16 (((𝑂𝑓) “ {𝑊}) = ∅ → (#‘((𝑂𝑓) “ {𝑊})) = (#‘∅))
113112, 92syl6eq 2671 . . . . . . . . . . . . . . 15 (((𝑂𝑓) “ {𝑊}) = ∅ → (#‘((𝑂𝑓) “ {𝑊})) = 0)
114113breq1d 4628 . . . . . . . . . . . . . 14 (((𝑂𝑓) “ {𝑊}) = ∅ → ((#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ 0 ≤ (𝐷𝑓)))
115111, 114syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
116115a1dd 50 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
117 n0 3912 . . . . . . . . . . . . 13 (((𝑂𝑓) “ {𝑊}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
118 simplll 797 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑅 ∈ IDomn)
119 simplrl 799 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑓𝐵)
120 eqid 2621 . . . . . . . . . . . . . . . 16 (var1𝑅) = (var1𝑅)
121 eqid 2621 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
122 eqid 2621 . . . . . . . . . . . . . . . 16 ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥)) = ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥))
123 simpllr 798 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑑 ∈ ℕ0)
124 simplrr 800 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (𝐷𝑓) = (𝑑 + 1))
125 simprl 793 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
126 simprr 795 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
12710, 12, 9, 57, 83, 11, 118, 119, 52, 120, 121, 44, 122, 123, 124, 125, 126fta1glem2 23843 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
128127exp32 630 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
129128exlimdv 1858 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
130117, 129syl5bi 232 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) ≠ ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
131116, 130pm2.61dne 2876 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
132131expr 642 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → ((𝐷𝑓) = (𝑑 + 1) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
133132com23 86 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
134133ralrimdva 2964 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
135106, 134syl5bi 232 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
136135expcom 451 . . . . . 6 (𝑑 ∈ ℕ0 → (𝑅 ∈ IDomn → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
137136a2d 29 . . . . 5 (𝑑 ∈ ℕ0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
13818, 22, 26, 30, 97, 137nn0ind 11423 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
13914, 3, 138sylc 65 . . 3 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
140 fveq2 6153 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
141140eqeq1d 2623 . . . . 5 (𝑓 = 𝐹 → ((𝐷𝑓) = (𝐷𝐹) ↔ (𝐷𝐹) = (𝐷𝐹)))
142 fveq2 6153 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑂𝑓) = (𝑂𝐹))
143142cnveqd 5263 . . . . . . . 8 (𝑓 = 𝐹(𝑂𝑓) = (𝑂𝐹))
144143imaeq1d 5429 . . . . . . 7 (𝑓 = 𝐹 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝐹) “ {𝑊}))
145144fveq2d 6157 . . . . . 6 (𝑓 = 𝐹 → (#‘((𝑂𝑓) “ {𝑊})) = (#‘((𝑂𝐹) “ {𝑊})))
146145, 140breq12d 4631 . . . . 5 (𝑓 = 𝐹 → ((#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
147141, 146imbi12d 334 . . . 4 (𝑓 = 𝐹 → (((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝐹) = (𝐷𝐹) → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))))
148147rspcv 3294 . . 3 (𝐹𝐵 → (∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ((𝐷𝐹) = (𝐷𝐹) → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))))
1492, 139, 148sylc 65 . 2 (𝜑 → ((𝐷𝐹) = (𝐷𝐹) → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
1501, 149mpi 20 1 (𝜑 → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  Vcvv 3189  ∅c0 3896  {csn 4153   class class class wbr 4618   × cxp 5077  ◡ccnv 5078   “ cima 5082   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  0cc0 9887  1c1 9888   + caddc 9890   ≤ cle 10026  ℕ0cn0 11243  #chash 13064  Basecbs 15788  0gc0g 16028   ↑s cpws 16035  -gcsg 17352  Ringcrg 18475  CRingccrg 18476   RingHom crh 18640  Domncdomn 19208  IDomncidom 19209  algSccascl 19239  var1cv1 19474  Poly1cpl1 19475  coe1cco1 19476  eval1ce1 19607   deg1 cdg1 23731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-sup 8299  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-xnn0 11315  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-fzo 12414  df-seq 12749  df-hash 13065  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-0g 16030  df-gsum 16031  df-prds 16036  df-pws 16038  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-mhm 17263  df-submnd 17264  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-ghm 17586  df-cntz 17678  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-srg 18434  df-ring 18477  df-cring 18478  df-oppr 18551  df-dvdsr 18569  df-unit 18570  df-invr 18600  df-rnghom 18643  df-subrg 18706  df-lmod 18793  df-lss 18861  df-lsp 18900  df-nzr 19186  df-rlreg 19211  df-domn 19212  df-idom 19213  df-assa 19240  df-asp 19241  df-ascl 19242  df-psr 19284  df-mvr 19285  df-mpl 19286  df-opsr 19288  df-evls 19434  df-evl 19435  df-psr1 19478  df-vr1 19479  df-ply1 19480  df-coe1 19481  df-evl1 19609  df-cnfld 19675  df-mdeg 23732  df-deg1 23733  df-mon1 23807  df-uc1p 23808  df-q1p 23809  df-r1p 23810 This theorem is referenced by:  fta1b  23846  lgsqrlem4  24987  idomrootle  37281
 Copyright terms: Public domain W3C validator