MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Structured version   Visualization version   GIF version

Theorem vmasum 24686
Description: The sum of the von Mangoldt function over the divisors of 𝑛. Equation 9.2.4 of [Shapiro], p. 328 and theorem 2.10 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = (log‘𝐴))
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem vmasum
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6088 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
2 fzfid 12592 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
3 dvdsssfz1 14827 . . . 4 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ (1...𝐴))
4 ssfi 8043 . . . 4 (((1...𝐴) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ (1...𝐴)) → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ∈ Fin)
52, 3, 4syl2anc 691 . . 3 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ∈ Fin)
6 ssrab2 3650 . . . 4 {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
76a1i 11 . . 3 (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ)
8 inss1 3795 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
9 ssfi 8043 . . . 4 (((1...𝐴) ∈ Fin ∧ ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)) → ((1...𝐴) ∩ ℙ) ∈ Fin)
102, 8, 9sylancl 693 . . 3 (𝐴 ∈ ℕ → ((1...𝐴) ∩ ℙ) ∈ Fin)
11 pccl 15341 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1211ancoms 468 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1312nn0zd 11315 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
14 fznn 12236 . . . . . . . 8 ((𝑝 pCnt 𝐴) ∈ ℤ → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
1513, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
1615anbi2d 736 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)))))
17 an12 834 . . . . . . 7 ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))
18 prmz 15176 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1918adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
20 iddvdsexp 14792 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝𝑘))
2119, 20sylan 487 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝𝑘))
2218ad2antlr 759 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℤ)
23 prmnn 15175 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2423adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
25 nnnn0 11149 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
26 nnexpcl 12693 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
2724, 25, 26syl2an 493 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
2827nnzd 11316 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
29 nnz 11235 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3029ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
31 dvdstr 14805 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑝 ∥ (𝑝𝑘) ∧ (𝑝𝑘) ∥ 𝐴) → 𝑝𝐴))
3222, 28, 30, 31syl3anc 1318 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∥ (𝑝𝑘) ∧ (𝑝𝑘) ∥ 𝐴) → 𝑝𝐴))
3321, 32mpand 707 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝𝐴))
34 simpll 786 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℕ)
35 dvdsle 14819 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑝𝐴𝑝𝐴))
3622, 34, 35syl2anc 691 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝𝐴𝑝𝐴))
3733, 36syld 46 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝𝐴))
3823ad2antlr 759 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
39 fznn 12236 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝐴)))
4039baibd 946 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝𝐴))
4130, 38, 40syl2anc 691 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝𝐴))
4237, 41sylibrd 248 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴𝑝 ∈ (1...𝐴)))
4342pm4.71rd 665 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∥ 𝐴 ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝𝑘) ∥ 𝐴)))
44 breq1 4581 . . . . . . . . . . 11 (𝑥 = (𝑝𝑘) → (𝑥𝐴 ↔ (𝑝𝑘) ∥ 𝐴))
4544elrab3 3332 . . . . . . . . . 10 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑝𝑘) ∥ 𝐴))
4627, 45syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ↔ (𝑝𝑘) ∥ 𝐴))
47 simplr 788 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℙ)
4825adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
49 pcdvdsb 15360 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝𝑘) ∥ 𝐴))
5047, 30, 48, 49syl3anc 1318 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝𝑘) ∥ 𝐴))
5150anbi2d 736 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝𝑘) ∥ 𝐴)))
5243, 46, 513bitr4rd 300 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}))
5352pm5.32da 671 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5417, 53syl5bb 271 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5516, 54bitrd 267 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
5655pm5.32da 671 . . . 4 (𝐴 ∈ ℕ → ((𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}))))
57 elin 3758 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
5857anbi1i 727 . . . . 5 ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))))
59 anass 679 . . . . 5 (((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
60 an12 834 . . . . 5 ((𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
6158, 59, 603bitri 285 . . . 4 ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))))
62 anass 679 . . . 4 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
6356, 61, 623bitr4g 302 . . 3 (𝐴 ∈ ℕ → ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴})))
647sselda 3568 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → 𝑛 ∈ ℕ)
65 vmacl 24589 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
6664, 65syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → (Λ‘𝑛) ∈ ℝ)
6766recnd 9925 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴}) → (Λ‘𝑛) ∈ ℂ)
68 simprr 792 . . 3 ((𝐴 ∈ ℕ ∧ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
691, 5, 7, 10, 63, 67, 68fsumvma 24683 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)))
7057simprbi 479 . . . . . . 7 (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
7170ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑝 ∈ ℙ)
72 elfznn 12199 . . . . . . 7 (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) → 𝑘 ∈ ℕ)
7372adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑘 ∈ ℕ)
74 vmappw 24587 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
7571, 73, 74syl2anc 691 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
7675sumeq2dv 14230 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝))
77 fzfid 12592 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (1...(𝑝 pCnt 𝐴)) ∈ Fin)
7870, 23syl 17 . . . . . . . . 9 (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℕ)
7978adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
8079nnrpd 11705 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
8180relogcld 24118 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
8281recnd 9925 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
83 fsumconst 14313 . . . . 5 (((1...(𝑝 pCnt 𝐴)) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((#‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)))
8477, 82, 83syl2anc 691 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((#‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)))
8570, 12sylan2 490 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
86 hashfz1 12951 . . . . . 6 ((𝑝 pCnt 𝐴) ∈ ℕ0 → (#‘(1...(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
8785, 86syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (#‘(1...(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
8887oveq1d 6542 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → ((#‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝)) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
8976, 84, 883eqtrd 2648 . . 3 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
9089sumeq2dv 14230 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
91 pclogsum 24685 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
9269, 90, 913eqtrd 2648 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐴} (Λ‘𝑛) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  cin 3539  wss 3540   class class class wbr 4578  cfv 5790  (class class class)co 6527  Fincfn 7819  cc 9791  cr 9792  0cc0 9793  1c1 9794   · cmul 9798  cle 9932  cn 10870  0cn0 11142  cz 11213  ...cfz 12155  cexp 12680  #chash 12937  Σcsu 14213  cdvds 14770  cprime 15172   pCnt cpc 15328  logclog 24050  Λcvma 24563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-pi 14591  df-dvds 14771  df-gcd 15004  df-prm 15173  df-pc 15329  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-log 24052  df-vma 24569
This theorem is referenced by:  logfac2  24687  dchrvmasumlem1  24929  vmalogdivsum2  24972  logsqvma  24976
  Copyright terms: Public domain W3C validator