MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Structured version   Visualization version   GIF version

Theorem chebbnd1lem1 24847
Description: Lemma for chebbnd1 24850: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 24707. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 24698, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 24694 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
Assertion
Ref Expression
chebbnd1lem1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))

Proof of Theorem chebbnd1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn 10942 . . . . . 6 4 ∈ ℕ
2 eluznn 11498 . . . . . . . 8 ((4 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘4)) → 𝑁 ∈ ℕ)
31, 2mpan 701 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ)
43nnnn0d 11106 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ0)
5 nnexpcl 12603 . . . . . 6 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
61, 4, 5sylancr 693 . . . . 5 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℕ)
76nnrpd 11612 . . . 4 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℝ+)
83nnrpd 11612 . . . 4 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ+)
97, 8rpdivcld 11631 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) ∈ ℝ+)
109relogcld 24060 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ)
11 fzctr 12188 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
124, 11syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 12840 . . . . 5 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnrpd 11612 . . 3 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ+)
1615relogcld 24060 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ)
17 2z 11150 . . . . . . 7 2 ∈ ℤ
18 eluzelz 11437 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℤ)
19 zmulcl 11167 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2017, 18, 19sylancr 693 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℤ)
2120zred 11222 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ)
22 ppicl 24546 . . . . 5 ((2 · 𝑁) ∈ ℝ → (π‘(2 · 𝑁)) ∈ ℕ0)
2321, 22syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℕ0)
2423nn0red 11107 . . 3 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℝ)
25 2nn 10940 . . . . . 6 2 ∈ ℕ
26 nnmulcl 10798 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2725, 3, 26sylancr 693 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℕ)
2827nnrpd 11612 . . . 4 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ+)
2928relogcld 24060 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ)
3024, 29remulcld 9825 . 2 (𝑁 ∈ (ℤ‘4) → ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))) ∈ ℝ)
31 bclbnd 24694 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
32 logltb 24037 . . . 4 ((((4↑𝑁) / 𝑁) ∈ ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
339, 15, 32syl2anc 690 . . 3 (𝑁 ∈ (ℤ‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
3431, 33mpbid 220 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))
35 chebbnd1lem1.1 . . . . . . . 8 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
3627, 14ifcld 3984 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ)
3735, 36syl5eqel 2596 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℕ)
3837nnred 10790 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℝ)
39 ppicl 24546 . . . . . 6 (𝐾 ∈ ℝ → (π𝐾) ∈ ℕ0)
4038, 39syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℕ0)
4140nn0red 11107 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℝ)
4241, 29remulcld 9825 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ∈ ℝ)
43 fzfid 12502 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ∈ Fin)
44 inss1 3698 . . . . . 6 ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)
45 ssfi 7941 . . . . . 6 (((1...𝐾) ∈ Fin ∧ ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 692 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4737nnzd 11221 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℤ)
4814nnzd 11221 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ)
4914nnred 10790 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ)
50 min2 11764 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5121, 49, 50syl2anc 690 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5235, 51syl5eqbr 4516 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁))
53 eluz2 11433 . . . . . . . . . 10 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁)))
5447, 48, 52, 53syl3anbrc 1238 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ𝐾))
55 fzss2 12120 . . . . . . . . 9 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5654, 55syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
57 ssrin 3703 . . . . . . . 8 ((1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5856, 57syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5958sselda 3472 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
60 inss1 3698 . . . . . . . . . . 11 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))
61 simpr 475 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
6260, 61sseldi 3470 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
63 elfznn 12109 . . . . . . . . . 10 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ)
6462, 63syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ)
65 inss2 3699 . . . . . . . . . . 11 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ ℙ
6665, 61sseldi 3470 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ)
6714adantr 479 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
6866, 67pccld 15277 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6964, 68nnexpcld 12760 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
7069nnrpd 11612 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7170relogcld 24060 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7259, 71syldan 485 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7329adantr 479 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2 · 𝑁)) ∈ ℝ)
74 elin 3662 . . . . . . . . 9 (𝑘 ∈ ((1...𝐾) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ℙ))
7574simprbi 478 . . . . . . . 8 (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ)
76 bposlem1 24698 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
773, 75, 76syl2an 492 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
7859, 70syldan 485 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7978reeflogd 24061 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
8028adantr 479 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈ ℝ+)
8180reeflogd 24061 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
8277, 79, 813brtr4d 4513 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁))))
83 efle 14556 . . . . . . 7 (((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2 · 𝑁)) ∈ ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8472, 73, 83syl2anc 690 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8582, 84mpbird 245 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)))
8646, 72, 73, 85fsumle 14241 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)))
8771recnd 9823 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
8859, 87syldan 485 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
89 eldifn 3599 . . . . . . . . . . . . 13 (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
9089adantl 480 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
91 simpr 475 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)))
9291eldifad 3456 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
9360, 92sseldi 3470 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
9493, 63syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℕ)
9594adantrr 748 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℕ)
9695nnred 10790 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℝ)
9792, 69syldan 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
9897nnred 10790 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9998adantrr 748 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
10021adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈ ℝ)
10195nncnd 10791 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℂ)
102101exp1d 12733 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘)
10395nnge1d 10818 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘)
104 simprr 791 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
105 nnuz 11463 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
106104, 105syl6eleq 2602 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ (ℤ‘1))
10796, 103, 106leexp2ad 12771 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
108102, 107eqbrtrrd 4505 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
1093adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ)
11065, 92sseldi 3470 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℙ)
111110adantrr 748 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℙ)
112109, 111, 76syl2anc 690 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
11396, 99, 100, 108, 112letrd 9945 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁))
114 elfzle2 12084 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11593, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
116115adantrr 748 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11749adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 · 𝑁)C𝑁) ∈ ℝ)
118 lemin 11766 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
11996, 100, 117, 118syl3anc 1317 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
120113, 116, 119mpbir2and 958 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)))
121120, 35syl6breqr 4523 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘𝐾)
12237adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ)
123122nnzd 11221 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ)
124 fznn 12146 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
125123, 124syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
12695, 121, 125mpbir2and 958 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾))
127126, 111elind 3663 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ))
128127expr 640 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ)))
12990, 128mtod 187 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
13092, 68syldan 485 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
131 elnn0 11049 . . . . . . . . . . . . 13 ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
132130, 131sylib 206 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
133132ord 390 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
134129, 133mpd 15 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)
135134oveq2d 6442 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0))
13694nncnd 10791 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℂ)
137136exp0d 12732 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1)
138135, 137eqtrd 2548 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1)
139138fveq2d 5991 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1))
140 log1 24023 . . . . . . 7 (log‘1) = 0
141139, 140syl6eq 2564 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0)
142 fzfid 12502 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin)
143 ssfi 7941 . . . . . . 7 (((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
144142, 60, 143sylancl 692 . . . . . 6 (𝑁 ∈ (ℤ‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
14558, 88, 141, 144fsumss 14172 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))))
14664nnrpd 11612 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+)
14768nn0zd 11220 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
148 relogexp 24033 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
149146, 147, 148syl2anc 690 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
150149sumeq2dv 14150 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
151 pclogsum 24629 . . . . . 6 (((2 · 𝑁)C𝑁) ∈ ℕ → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
15214, 151syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
153145, 150, 1523eqtrd 2552 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁)))
15429recnd 9823 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℂ)
155 fsumconst 14233 . . . . . 6 ((((1...𝐾) ∩ ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
15646, 154, 155syl2anc 690 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
157 2eluzge1 11474 . . . . . . 7 2 ∈ (ℤ‘1)
158 ppival2g 24544 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (π𝐾) = (#‘((1...𝐾) ∩ ℙ)))
15947, 157, 158sylancl 692 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (π𝐾) = (#‘((1...𝐾) ∩ ℙ)))
160159oveq1d 6441 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) = ((#‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
161156, 160eqtr4d 2551 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π𝐾) · (log‘(2 · 𝑁))))
16286, 153, 1613brtr3d 4512 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π𝐾) · (log‘(2 · 𝑁))))
163 min1 11763 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16421, 49, 163syl2anc 690 . . . . . 6 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16535, 164syl5eqbr 4516 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ (2 · 𝑁))
166 ppiwordi 24577 . . . . 5 ((𝐾 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ 𝐾 ≤ (2 · 𝑁)) → (π𝐾) ≤ (π‘(2 · 𝑁)))
16738, 21, 165, 166syl3anc 1317 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ≤ (π‘(2 · 𝑁)))
168 1red 9810 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 ∈ ℝ)
169 2re 10845 . . . . . . . 8 2 ∈ ℝ
170169a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ∈ ℝ)
171 1lt2 10949 . . . . . . . 8 1 < 2
172171a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 < 2)
173 2t1e2 10931 . . . . . . . 8 (2 · 1) = 2
1743nnge1d 10818 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → 1 ≤ 𝑁)
175 eluzelre 11438 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ)
176 2pos 10867 . . . . . . . . . . . 12 0 < 2
177169, 176pm3.2i 469 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
178177a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → (2 ∈ ℝ ∧ 0 < 2))
179 lemul2 10625 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
180168, 175, 178, 179syl3anc 1317 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
181174, 180mpbid 220 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (2 · 1) ≤ (2 · 𝑁))
182173, 181syl5eqbrr 4517 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ≤ (2 · 𝑁))
183168, 170, 21, 172, 182ltletrd 9948 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 1 < (2 · 𝑁))
18421, 183rplogcld 24066 . . . . 5 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ+)
18541, 24, 184lemul1d 11657 . . . 4 (𝑁 ∈ (ℤ‘4) → ((π𝐾) ≤ (π‘(2 · 𝑁)) ↔ ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))))
186167, 185mpbid 220 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18716, 42, 30, 162, 186letrd 9945 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18810, 16, 30, 34, 187ltletrd 9948 1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1938  cdif 3441  cin 3443  wss 3444  ifcif 3939   class class class wbr 4481  cfv 5689  (class class class)co 6426  Fincfn 7717  cc 9689  cr 9690  0cc0 9691  1c1 9692   · cmul 9696   < clt 9829  cle 9830   / cdiv 10433  cn 10775  2c2 10825  4c4 10827  0cn0 11047  cz 11118  cuz 11427  +crp 11574  ...cfz 12065  cexp 12590  Ccbc 12819  #chash 12847  Σcsu 14133  expce 14500  cprime 15099   pCnt cpc 15263  logclog 23992  πcppi 24509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-of 6671  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-2o 7324  df-oadd 7327  df-er 7505  df-map 7622  df-pm 7623  df-ixp 7671  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-fi 8076  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-cda 8749  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ioo 11919  df-ioc 11920  df-ico 11921  df-icc 11922  df-fz 12066  df-fzo 12203  df-fl 12323  df-mod 12399  df-seq 12532  df-exp 12591  df-fac 12791  df-bc 12820  df-hash 12848  df-shft 13514  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-limsup 13910  df-clim 13933  df-rlim 13934  df-sum 14134  df-ef 14506  df-sin 14508  df-cos 14509  df-pi 14511  df-dvds 14691  df-gcd 14928  df-prm 15100  df-pc 15264  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-sca 15668  df-vsca 15669  df-ip 15670  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-hom 15677  df-cco 15678  df-rest 15790  df-topn 15791  df-0g 15809  df-gsum 15810  df-topgen 15811  df-pt 15812  df-prds 15815  df-xrs 15869  df-qtop 15875  df-imas 15876  df-xps 15879  df-mre 15961  df-mrc 15962  df-acs 15964  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-submnd 17051  df-mulg 17256  df-cntz 17465  df-cmn 17926  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-cnfld 19472  df-top 20424  df-bases 20425  df-topon 20426  df-topsp 20427  df-cld 20536  df-ntr 20537  df-cls 20538  df-nei 20615  df-lp 20653  df-perf 20654  df-cn 20744  df-cnp 20745  df-haus 20832  df-tx 21078  df-hmeo 21271  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-xms 21837  df-ms 21838  df-tms 21839  df-cncf 22412  df-limc 23311  df-dv 23312  df-log 23994  df-ppi 24515
This theorem is referenced by:  chebbnd1lem3  24849
  Copyright terms: Public domain W3C validator