MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Visualization version   GIF version

Theorem isumshft 15194
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (ℤ𝑀)
isumshft.2 𝑊 = (ℤ‘(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
isumshft.4 (𝜑𝐾 ∈ ℤ)
isumshft.5 (𝜑𝑀 ∈ ℤ)
isumshft.6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
isumshft (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑗,𝑘,𝐾   𝜑,𝑗,𝑘   𝑗,𝑊,𝑘   𝐵,𝑗   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem isumshft
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2 isumshft.4 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
31, 2zaddcld 12092 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4 isumshft.2 . . . . . . . . . 10 𝑊 = (ℤ‘(𝑀 + 𝐾))
54eleq2i 2904 . . . . . . . . 9 (𝑚𝑊𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
62zcnd 12089 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
7 eluzelcn 12256 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ)
87, 4eleq2s 2931 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℂ)
9 isumshft.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
109fvexi 6684 . . . . . . . . . . . . 13 𝑍 ∈ V
1110mptex 6986 . . . . . . . . . . . 12 (𝑘𝑍𝐵) ∈ V
1211shftval 14433 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
136, 8, 12syl2an 597 . . . . . . . . . 10 ((𝜑𝑚𝑊) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
14 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘𝑍)
15 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
1615fvmpt2i 6778 . . . . . . . . . . . . . . . 16 (𝑘𝑍 → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
1714, 16syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
18 eluzelcn 12256 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
1918, 9eleq2s 2931 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍𝑘 ∈ ℂ)
20 addcom 10826 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
216, 19, 20syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
22 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘𝑍)
2322, 9eleqtrdi 2923 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
24 eluzadd 12274 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2523, 2, 24syl2anr 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2621, 25eqeltrd 2913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
2726, 4eleqtrrdi 2924 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
28 isumshft.3 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
29 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑗𝑊𝐴) = (𝑗𝑊𝐴)
3028, 29fvmpti 6767 . . . . . . . . . . . . . . . 16 ((𝐾 + 𝑘) ∈ 𝑊 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3127, 30syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3217, 31eqtr4d 2859 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
3332ralrimiva 3182 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
34 nffvmpt1 6681 . . . . . . . . . . . . . . 15 𝑘((𝑘𝑍𝐵)‘𝑛)
3534nfeq1 2993 . . . . . . . . . . . . . 14 𝑘((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))
36 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘𝑍𝐵)‘𝑘) = ((𝑘𝑍𝐵)‘𝑛))
37 oveq2 7164 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛))
3837fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
3936, 38eqeq12d 2837 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4035, 39rspc 3611 . . . . . . . . . . . . 13 (𝑛𝑍 → (∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4133, 40mpan9 509 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
4241ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
431adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑀 ∈ ℤ)
442adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝐾 ∈ ℤ)
45 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑊) → 𝑚𝑊)
4645, 4eleqtrdi 2923 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
47 eluzsub 12275 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑚𝐾) ∈ (ℤ𝑀))
4843, 44, 46, 47syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ (ℤ𝑀))
4948, 9eleqtrrdi 2924 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ 𝑍)
50 fveq2 6670 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
51 oveq2 7164 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚𝐾)))
5251fveq2d 6674 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5350, 52eqeq12d 2837 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾)))))
5453rspccva 3622 . . . . . . . . . . 11 ((∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚𝐾) ∈ 𝑍) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5542, 49, 54syl2an2r 683 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
56 pncan3 10894 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
576, 8, 56syl2an 597 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝐾 + (𝑚𝐾)) = 𝑚)
5857fveq2d 6674 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))) = ((𝑗𝑊𝐴)‘𝑚))
5913, 55, 583eqtrrd 2861 . . . . . . . . 9 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
605, 59sylan2br 596 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
613, 60seqfeq 13396 . . . . . . 7 (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)))
6261breq1d 5076 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6311isershft 15020 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
641, 2, 63syl2anc 586 . . . . . 6 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6562, 64bitr4d 284 . . . . 5 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
6665iotabidv 6339 . . . 4 (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
67 df-fv 6363 . . . 4 ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥)
68 df-fv 6363 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥)
6966, 67, 683eqtr4g 2881 . . 3 (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
70 eqidd 2822 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = ((𝑗𝑊𝐴)‘𝑚))
71 isumshft.6 . . . . . 6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
7271fmpttd 6879 . . . . 5 (𝜑 → (𝑗𝑊𝐴):𝑊⟶ℂ)
7372ffvelrnda 6851 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
744, 3, 70, 73isum 15076 . . 3 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))))
75 eqidd 2822 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘𝑛))
7627ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊)
7737eleq1d 2897 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊))
7877rspccva 3622 . . . . . . 7 ((∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
7976, 78sylan 582 . . . . . 6 ((𝜑𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
80 ffvelrn 6849 . . . . . 6 (((𝑗𝑊𝐴):𝑊⟶ℂ ∧ (𝐾 + 𝑛) ∈ 𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8172, 79, 80syl2an2r 683 . . . . 5 ((𝜑𝑛𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8241, 81eqeltrd 2913 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) ∈ ℂ)
839, 1, 75, 82isum 15076 . . 3 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
8469, 74, 833eqtr4d 2866 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛))
85 sumfc 15066 . 2 Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴
86 sumfc 15066 . 2 Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵
8784, 85, 863eqtr3g 2879 1 (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5066  cmpt 5146   I cid 5459  cio 6312  wf 6351  cfv 6355  (class class class)co 7156  cc 10535   + caddc 10540  cmin 10870  cz 11982  cuz 12244  seqcseq 13370   shift cshi 14425  cli 14841  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043
This theorem is referenced by:  eftlub  15462  pserdv2  25018  logtayl  25243  binomcxplemnotnn0  40708
  Copyright terms: Public domain W3C validator