MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Visualization version   GIF version

Theorem isumshft 14279
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (ℤ𝑀)
isumshft.2 𝑊 = (ℤ‘(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
isumshft.4 (𝜑𝐾 ∈ ℤ)
isumshft.5 (𝜑𝑀 ∈ ℤ)
isumshft.6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
isumshft (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑗,𝑘,𝐾   𝜑,𝑗,𝑘   𝑗,𝑊,𝑘   𝐵,𝑗   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem isumshft
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2 isumshft.4 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
31, 2zaddcld 11226 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4 isumshft.2 . . . . . . . . . 10 𝑊 = (ℤ‘(𝑀 + 𝐾))
54eleq2i 2584 . . . . . . . . 9 (𝑚𝑊𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
62zcnd 11223 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
7 eluzelcn 11439 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ)
87, 4eleq2s 2610 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℂ)
9 isumshft.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
10 fvex 5997 . . . . . . . . . . . . . 14 (ℤ𝑀) ∈ V
119, 10eqeltri 2588 . . . . . . . . . . . . 13 𝑍 ∈ V
1211mptex 6267 . . . . . . . . . . . 12 (𝑘𝑍𝐵) ∈ V
1312shftval 13521 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
146, 8, 13syl2an 492 . . . . . . . . . 10 ((𝜑𝑚𝑊) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
15 simpr 475 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 𝑘𝑍)
16 eqid 2514 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
1716fvmpt2i 6083 . . . . . . . . . . . . . . . . 17 (𝑘𝑍 → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
1815, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
19 eluzelcn 11439 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
2019, 9eleq2s 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℂ)
21 addcom 9973 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
226, 20, 21syl2an 492 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
23 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘𝑍)
2423, 9syl6eleq 2602 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
25 eluzadd 11456 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2624, 2, 25syl2anr 493 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2722, 26eqeltrd 2592 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
2827, 4syl6eleqr 2603 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
29 isumshft.3 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
30 eqid 2514 . . . . . . . . . . . . . . . . . 18 (𝑗𝑊𝐴) = (𝑗𝑊𝐴)
3129, 30fvmpti 6074 . . . . . . . . . . . . . . . . 17 ((𝐾 + 𝑘) ∈ 𝑊 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3228, 31syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3318, 32eqtr4d 2551 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
3433ralrimiva 2853 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
35 nffvmpt1 5995 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝑍𝐵)‘𝑛)
3635nfeq1 2668 . . . . . . . . . . . . . . 15 𝑘((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))
37 fveq2 5987 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑘𝑍𝐵)‘𝑘) = ((𝑘𝑍𝐵)‘𝑛))
38 oveq2 6434 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛))
3938fveq2d 5991 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
4037, 39eqeq12d 2529 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4136, 40rspc 3180 . . . . . . . . . . . . . 14 (𝑛𝑍 → (∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4234, 41mpan9 484 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
4342ralrimiva 2853 . . . . . . . . . . . 12 (𝜑 → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
4443adantr 479 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
451adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑀 ∈ ℤ)
462adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝐾 ∈ ℤ)
47 simpr 475 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑊) → 𝑚𝑊)
4847, 4syl6eleq 2602 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
49 eluzsub 11457 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑚𝐾) ∈ (ℤ𝑀))
5045, 46, 48, 49syl3anc 1317 . . . . . . . . . . . 12 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ (ℤ𝑀))
5150, 9syl6eleqr 2603 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ 𝑍)
52 fveq2 5987 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
53 oveq2 6434 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚𝐾)))
5453fveq2d 5991 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5552, 54eqeq12d 2529 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾)))))
5655rspccva 3185 . . . . . . . . . . 11 ((∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚𝐾) ∈ 𝑍) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5744, 51, 56syl2anc 690 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
58 pncan3 10040 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
596, 8, 58syl2an 492 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝐾 + (𝑚𝐾)) = 𝑚)
6059fveq2d 5991 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))) = ((𝑗𝑊𝐴)‘𝑚))
6114, 57, 603eqtrrd 2553 . . . . . . . . 9 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
625, 61sylan2br 491 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
633, 62seqfeq 12556 . . . . . . 7 (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)))
6463breq1d 4491 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6512isershft 14108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
661, 2, 65syl2anc 690 . . . . . 6 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6764, 66bitr4d 269 . . . . 5 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
6867iotabidv 5674 . . . 4 (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
69 df-fv 5697 . . . 4 ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥)
70 df-fv 5697 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥)
7168, 69, 703eqtr4g 2573 . . 3 (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
72 eqidd 2515 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = ((𝑗𝑊𝐴)‘𝑚))
73 isumshft.6 . . . . . 6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
7473, 30fmptd 6176 . . . . 5 (𝜑 → (𝑗𝑊𝐴):𝑊⟶ℂ)
75 ffvelrn 6149 . . . . 5 (((𝑗𝑊𝐴):𝑊⟶ℂ ∧ 𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
7674, 75sylan 486 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
774, 3, 72, 76isum 14166 . . 3 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))))
78 eqidd 2515 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘𝑛))
7974adantr 479 . . . . . 6 ((𝜑𝑛𝑍) → (𝑗𝑊𝐴):𝑊⟶ℂ)
8028ralrimiva 2853 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊)
8138eleq1d 2576 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊))
8281rspccva 3185 . . . . . . 7 ((∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
8380, 82sylan 486 . . . . . 6 ((𝜑𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
84 ffvelrn 6149 . . . . . 6 (((𝑗𝑊𝐴):𝑊⟶ℂ ∧ (𝐾 + 𝑛) ∈ 𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8579, 83, 84syl2anc 690 . . . . 5 ((𝜑𝑛𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8642, 85eqeltrd 2592 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) ∈ ℂ)
879, 1, 78, 86isum 14166 . . 3 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
8871, 77, 873eqtr4d 2558 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛))
89 sumfc 14156 . 2 Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴
90 sumfc 14156 . 2 Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵
9188, 89, 903eqtr3g 2571 1 (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  wral 2800  Vcvv 3077   class class class wbr 4481  cmpt 4541   I cid 4842  cio 5651  wf 5685  cfv 5689  (class class class)co 6426  cc 9689   + caddc 9694  cmin 10017  cz 11118  cuz 11427  seqcseq 12531   shift cshi 13513  cli 13929  Σcsu 14133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-oadd 7327  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-oi 8174  df-card 8524  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-n0 11048  df-z 11119  df-uz 11428  df-rp 11575  df-fz 12066  df-fzo 12203  df-seq 12532  df-exp 12591  df-hash 12848  df-shft 13514  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-clim 13933  df-sum 14134
This theorem is referenced by:  eftlub  14547  pserdv2  23875  logtayl  24093  binomcxplemnotnn0  37474
  Copyright terms: Public domain W3C validator