MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Visualization version   GIF version

Theorem ablfac1c 19193
Description: The factors of ablfac1b 19192 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
ablfac1c (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Distinct variable groups:   𝑤,𝑝,𝑥,𝐵   𝐷,𝑝,𝑥   𝜑,𝑝,𝑤,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1c
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2 (𝜑𝐵 ∈ Fin)
2 ablfac1.b . . . 4 𝐵 = (Base‘𝐺)
32dprdssv 19138 . . 3 (𝐺 DProd 𝑆) ⊆ 𝐵
43a1i 11 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵)
5 ssfi 8738 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin)
61, 3, 5sylancl 588 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ Fin)
7 hashcl 13718 . . . . 5 ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
86, 7syl 17 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
9 hashcl 13718 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
101, 9syl 17 . . . 4 (𝜑 → (♯‘𝐵) ∈ ℕ0)
11 ablfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
12 ablfac1.s . . . . . . 7 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
13 ablfac1.g . . . . . . 7 (𝜑𝐺 ∈ Abel)
14 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
152, 11, 12, 13, 1, 14ablfac1b 19192 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
16 dprdsubg 19146 . . . . . 6 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
182lagsubg 18342 . . . . 5 (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
1917, 1, 18syl2anc 586 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
20 breq1 5069 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
21 ablfac1c.d . . . . . . . . . . 11 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
2220, 21elrab2 3683 . . . . . . . . . 10 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
23 ablfac1.2 . . . . . . . . . . 11 (𝜑𝐷𝐴)
2423sseld 3966 . . . . . . . . . 10 (𝜑 → (𝑞𝐷𝑞𝐴))
2522, 24syl5bir 245 . . . . . . . . 9 (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴))
2625impl 458 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴)
272, 11, 12, 13, 1, 14ablfac1a 19191 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
282fvexi 6684 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
2928rabex 5235 . . . . . . . . . . . . . . . . . 18 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3029, 12dmmpti 6492 . . . . . . . . . . . . . . . . 17 dom 𝑆 = 𝐴
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 = 𝐴)
3215, 31dprdf2 19129 . . . . . . . . . . . . . . 15 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3332ffvelrnda 6851 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
3415adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑆)
3530a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑆 = 𝐴)
36 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑞𝐴)
3734, 35, 36dprdub 19147 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))
3817adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
39 eqid 2821 . . . . . . . . . . . . . . . 16 (𝐺s (𝐺 DProd 𝑆)) = (𝐺s (𝐺 DProd 𝑆))
4039subsubg 18302 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4138, 40syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4233, 37, 41mpbir2and 711 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))))
4339subgbas 18283 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
4438, 43syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
456adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ Fin)
4644, 45eqeltrrd 2914 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin)
47 eqid 2821 . . . . . . . . . . . . . 14 (Base‘(𝐺s (𝐺 DProd 𝑆))) = (Base‘(𝐺s (𝐺 DProd 𝑆)))
4847lagsubg 18342 . . . . . . . . . . . . 13 (((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
4942, 46, 48syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5044fveq2d 6674 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5149, 50breqtrrd 5094 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(𝐺 DProd 𝑆)))
5227, 51eqbrtrrd 5090 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))
5314sselda 3967 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
548nn0zd 12086 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
5554adantr 483 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
56 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
57 ablgrp 18911 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
582grpbn0 18132 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
5913, 57, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
60 hashnncl 13728 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
611, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
6259, 61mpbird 259 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐵) ∈ ℕ)
6362adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → (♯‘𝐵) ∈ ℕ)
6456, 63pccld 16187 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6553, 64syldan 593 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
66 pcdvdsb 16205 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6753, 55, 65, 66syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6852, 67mpbird 259 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
6968adantlr 713 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
7026, 69syldan 593 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
71 pceq0 16207 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7256, 63, 71syl2anc 586 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7372biimpar 480 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0)
74 eqid 2821 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
7574subg0cl 18287 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd 𝑆))
76 ne0i 4300 . . . . . . . . . . . . . 14 ((0g𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
7717, 75, 763syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 DProd 𝑆) ≠ ∅)
78 hashnncl 13728 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
796, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
8077, 79mpbird 259 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8180adantr 483 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8256, 81pccld 16187 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈ ℕ0)
8382nn0ge0d 11959 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8483adantr 483 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8573, 84eqbrtrd 5088 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8670, 85pm2.61dan 811 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8786ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8810nn0zd 12086 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
89 pc2dvds 16215 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9088, 54, 89syl2anc 586 . . . . 5 (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9187, 90mpbird 259 . . . 4 (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))
92 dvdseq 15664 . . . 4 ((((♯‘(𝐺 DProd 𝑆)) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵) ∧ (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))) → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
938, 10, 19, 91, 92syl22anc 836 . . 3 (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
94 hashen 13708 . . . 4 (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
956, 1, 94syl2anc 586 . . 3 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
9693, 95mpbid 234 . 2 (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵)
97 fisseneq 8729 . 2 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵)
981, 4, 96, 97syl3anc 1367 1 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  cen 8506  Fincfn 8509  0cc0 10537  cle 10676  cn 11638  0cn0 11898  cz 11982  cexp 13430  chash 13691  cdvds 15607  cprime 16015   pCnt cpc 16173  Basecbs 16483  s cress 16484  0gc0g 16713  Grpcgrp 18103  SubGrpcsubg 18273  odcod 18652  Abelcabl 18907   DProd cdprd 19115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-eqg 18278  df-ghm 18356  df-gim 18399  df-ga 18420  df-cntz 18447  df-oppg 18474  df-od 18656  df-lsm 18761  df-pj1 18762  df-cmn 18908  df-abl 18909  df-dprd 19117
This theorem is referenced by:  ablfaclem2  19208
  Copyright terms: Public domain W3C validator