Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem2 Structured version   Visualization version   GIF version

Theorem ovolval5lem2 39340
Description: |- ( ( ph /\ n e. NN ) -> <. ( ( 1st (𝐹 n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd (𝐹 n ) ) >. e. ( RR X. RR ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem2.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval5lem2.y (𝜑𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
ovolval5lem2.z 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))
ovolval5lem2.f (𝜑𝐹:ℕ⟶(ℝ × ℝ))
ovolval5lem2.s (𝜑𝐴 ran ([,) ∘ 𝐹))
ovolval5lem2.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
Assertion
Ref Expression
ovolval5lem2 (𝜑 → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
Distinct variable groups:   𝐴,𝑓,𝑧   𝑛,𝐹   𝑓,𝐺   𝑛,𝐺   𝑧,𝑄   𝑛,𝑊   𝑧,𝑊   𝑧,𝑌   𝑓,𝑍,𝑧   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑧,𝑓)   𝐴(𝑛)   𝑄(𝑓,𝑛)   𝐹(𝑧,𝑓)   𝐺(𝑧)   𝑊(𝑓)   𝑌(𝑓,𝑛)   𝑍(𝑛)

Proof of Theorem ovolval5lem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ovolval5lem2.z . . . . . 6 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))
21a1i 11 . . . . 5 (𝜑𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
3 nnex 10873 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
5 volioof 38677 . . . . . . . 8 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
65a1i 11 . . . . . . 7 (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
7 rexpssxrxp 9940 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
87a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
9 ovolval5lem2.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
109ffvelrnda 6252 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
11 xp1st 7066 . . . . . . . . . . 11 ((𝐹𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
13 ovolval5lem2.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ℝ+)
1413rpred 11704 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℝ)
1514adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 2nn 11032 . . . . . . . . . . . . . . 15 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℕ)
18 nnnn0 11146 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1917, 18nnexpcld 12847 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2019nnred 10882 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2120adantl 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2219nnne0d 10912 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2322adantl 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
2415, 21, 23redivcld 10702 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
2512, 24resubcld 10309 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ ℝ)
26 xp2nd 7067 . . . . . . . . . 10 ((𝐹𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2710, 26syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2825, 27opelxpd 5063 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ (ℝ × ℝ))
29 ovolval5lem2.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
3028, 29fmptd 6277 . . . . . . 7 (𝜑𝐺:ℕ⟶(ℝ × ℝ))
316, 8, 30fcoss 38193 . . . . . 6 (𝜑 → ((vol ∘ (,)) ∘ 𝐺):ℕ⟶(0[,]+∞))
324, 31sge0xrcl 39075 . . . . 5 (𝜑 → (Σ^‘((vol ∘ (,)) ∘ 𝐺)) ∈ ℝ*)
332, 32eqeltrd 2687 . . . 4 (𝜑𝑍 ∈ ℝ*)
34 reex 9883 . . . . . . . . 9 ℝ ∈ V
3534, 34xpex 6837 . . . . . . . 8 (ℝ × ℝ) ∈ V
3635a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
3736, 4elmapd 7735 . . . . . 6 (𝜑 → (𝐺 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ↔ 𝐺:ℕ⟶(ℝ × ℝ)))
3830, 37mpbird 245 . . . . 5 (𝜑𝐺 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
39 ovolval5lem2.s . . . . . . 7 (𝜑𝐴 ran ([,) ∘ 𝐹))
4030ffvelrnda 6252 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
41 xp1st 7066 . . . . . . . . . . . . . 14 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4342rexrd 9945 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ*)
44 xp2nd 7067 . . . . . . . . . . . . . 14 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4540, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4645rexrd 9945 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ*)
4713adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
4819nnrpd 11702 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4948adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
5047, 49rpdivcld 11721 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
5112, 50ltsubrpd 11736 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
52 id 22 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
53 opex 4853 . . . . . . . . . . . . . . . . . . 19 ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V)
5529fvmpt2 6185 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
5652, 54, 55syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
5756fveq2d 6092 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩))
58 ovex 6555 . . . . . . . . . . . . . . . . . 18 ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ V
59 fvex 6098 . . . . . . . . . . . . . . . . . 18 (2nd ‘(𝐹𝑛)) ∈ V
60 op1stg 7048 . . . . . . . . . . . . . . . . . 18 ((((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ V ∧ (2nd ‘(𝐹𝑛)) ∈ V) → (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6158, 59, 60mp2an 703 . . . . . . . . . . . . . . . . 17 (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))
6261a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6357, 62eqtrd 2643 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6463adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6564breq1d 4587 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹𝑛))))
6651, 65mpbird 245 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)))
6756fveq2d 6092 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩))
6858, 59op2nd 7045 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = (2nd ‘(𝐹𝑛))
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = (2nd ‘(𝐹𝑛)))
7067, 69eqtrd 2643 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘(𝐹𝑛)))
7170adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(𝐹𝑛)))
7271eqcomd 2615 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐺𝑛)))
7327, 72eqled 9991 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ≤ (2nd ‘(𝐺𝑛)))
74 icossioo 12091 . . . . . . . . . . . 12 ((((1st ‘(𝐺𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)) ∧ (2nd ‘(𝐹𝑛)) ≤ (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
7543, 46, 66, 73, 74syl22anc 1318 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
76 1st2nd2 7073 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
7710, 76syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
7877fveq2d 6092 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
79 df-ov 6530 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
8079a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
8178, 80eqtr4d 2646 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))))
82 1st2nd2 7073 . . . . . . . . . . . . . . 15 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8340, 82syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8483fveq2d 6092 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐺𝑛)) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩))
85 df-ov 6530 . . . . . . . . . . . . . 14 ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8685a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩))
8784, 86eqtr4d 2646 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐺𝑛)) = ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
8881, 87sseq12d 3596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)) ↔ ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛)))))
8975, 88mpbird 245 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)))
9089ralrimiva 2948 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)))
91 ss2iun 4466 . . . . . . . . 9 (∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)) → 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
9290, 91syl 17 . . . . . . . 8 (𝜑 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
93 fvex 6098 . . . . . . . . . . . . 13 ([,)‘(𝐹𝑛)) ∈ V
9493rgenw 2907 . . . . . . . . . . . 12 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V
9594a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V)
96 dfiun3g 5286 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V → 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) = ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
9795, 96syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) = ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
98 icof 38202 . . . . . . . . . . . . . . 15 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
9998a1i 11 . . . . . . . . . . . . . 14 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
1009, 8, 99fcomptss 38186 . . . . . . . . . . . . 13 (𝜑 → ([,) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
101100eqcomd 2615 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ([,) ∘ 𝐹))
102101rneqd 5261 . . . . . . . . . . 11 (𝜑 → ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ran ([,) ∘ 𝐹))
103102unieqd 4376 . . . . . . . . . 10 (𝜑 ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ran ([,) ∘ 𝐹))
10497, 103eqtr2d 2644 . . . . . . . . 9 (𝜑 ran ([,) ∘ 𝐹) = 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)))
105 fvex 6098 . . . . . . . . . . . . 13 ((,)‘(𝐺𝑛)) ∈ V
106105rgenw 2907 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V
107106a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V)
108 dfiun3g 5286 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V → 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) = ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
109107, 108syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) = ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
110 ioof 12098 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
111110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
11230, 8, 111fcomptss 38186 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
113112eqcomd 2615 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ((,) ∘ 𝐺))
114113rneqd 5261 . . . . . . . . . . 11 (𝜑 → ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ran ((,) ∘ 𝐺))
115114unieqd 4376 . . . . . . . . . 10 (𝜑 ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ran ((,) ∘ 𝐺))
116109, 115eqtr2d 2644 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
117104, 116sseq12d 3596 . . . . . . . 8 (𝜑 → ( ran ([,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐺) ↔ 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛))))
11892, 117mpbird 245 . . . . . . 7 (𝜑 ran ([,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐺))
11939, 118sstrd 3577 . . . . . 6 (𝜑𝐴 ran ((,) ∘ 𝐺))
120119, 2jca 552 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
121 coeq2 5190 . . . . . . . . . 10 (𝑓 = 𝐺 → ((,) ∘ 𝑓) = ((,) ∘ 𝐺))
122121rneqd 5261 . . . . . . . . 9 (𝑓 = 𝐺 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
123122unieqd 4376 . . . . . . . 8 (𝑓 = 𝐺 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
124123sseq2d 3595 . . . . . . 7 (𝑓 = 𝐺 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐺)))
125 coeq2 5190 . . . . . . . . 9 (𝑓 = 𝐺 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
126125fveq2d 6092 . . . . . . . 8 (𝑓 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
127126eqeq2d 2619 . . . . . . 7 (𝑓 = 𝐺 → (𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
128124, 127anbi12d 742 . . . . . 6 (𝑓 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
129128rspcev 3281 . . . . 5 ((𝐺 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
13038, 120, 129syl2anc 690 . . . 4 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
13133, 130jca 552 . . 3 (𝜑 → (𝑍 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
132 eqeq1 2613 . . . . . 6 (𝑧 = 𝑍 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
133132anbi2d 735 . . . . 5 (𝑧 = 𝑍 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
134133rexbidv 3033 . . . 4 (𝑧 = 𝑍 → (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
135 ovolval5lem2.q . . . 4 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
136134, 135elrab2 3332 . . 3 (𝑍𝑄 ↔ (𝑍 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
137131, 136sylibr 222 . 2 (𝜑𝑍𝑄)
138 fveq2 6088 . . . . . . 7 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
139138fveq2d 6092 . . . . . 6 (𝑚 = 𝑛 → (1st ‘(𝐹𝑚)) = (1st ‘(𝐹𝑛)))
140138fveq2d 6092 . . . . . 6 (𝑚 = 𝑛 → (2nd ‘(𝐹𝑚)) = (2nd ‘(𝐹𝑛)))
141139, 140breq12d 4590 . . . . 5 (𝑚 = 𝑛 → ((1st ‘(𝐹𝑚)) < (2nd ‘(𝐹𝑚)) ↔ (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛))))
142141cbvrabv 3171 . . . 4 {𝑚 ∈ ℕ ∣ (1st ‘(𝐹𝑚)) < (2nd ‘(𝐹𝑚))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛))}
14312, 27, 13, 142ovolval5lem1 39339 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊))
144 nfcv 2750 . . . . . . . 8 𝑛𝐺
14530, 8fssd 5956 . . . . . . . 8 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
146144, 145volioofmpt 38684 . . . . . . 7 (𝜑 → ((vol ∘ (,)) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))))
14764, 71oveq12d 6545 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = (((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))
148147fveq2d 6092 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛)))) = (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))
149148mpteq2dva 4666 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))) = (𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))))
150146, 149eqtrd 2643 . . . . . 6 (𝜑 → ((vol ∘ (,)) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))))
151150fveq2d 6092 . . . . 5 (𝜑 → (Σ^‘((vol ∘ (,)) ∘ 𝐺)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))))
1522, 151eqtrd 2643 . . . 4 (𝜑𝑍 = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))))
153 ovolval5lem2.y . . . . . 6 (𝜑𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
154 nfcv 2750 . . . . . . . 8 𝑛𝐹
155 ressxr 9939 . . . . . . . . . . 11 ℝ ⊆ ℝ*
156 xpss2 5141 . . . . . . . . . . 11 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
157155, 156ax-mp 5 . . . . . . . . . 10 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
158157a1i 11 . . . . . . . . 9 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1599, 158fssd 5956 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
160154, 159volicofmpt 38687 . . . . . . 7 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))))))
161160fveq2d 6092 . . . . . 6 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))))
162153, 161eqtrd 2643 . . . . 5 (𝜑𝑌 = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))))
163162oveq1d 6542 . . . 4 (𝜑 → (𝑌 +𝑒 𝑊) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊))
164152, 163breq12d 4590 . . 3 (𝜑 → (𝑍 ≤ (𝑌 +𝑒 𝑊) ↔ (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊)))
165143, 164mpbird 245 . 2 (𝜑𝑍 ≤ (𝑌 +𝑒 𝑊))
166 breq1 4580 . . 3 (𝑧 = 𝑍 → (𝑧 ≤ (𝑌 +𝑒 𝑊) ↔ 𝑍 ≤ (𝑌 +𝑒 𝑊)))
167166rspcev 3281 . 2 ((𝑍𝑄𝑍 ≤ (𝑌 +𝑒 𝑊)) → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
168137, 165, 167syl2anc 690 1 (𝜑 → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  wss 3539  𝒫 cpw 4107  cop 4130   cuni 4366   ciun 4449   class class class wbr 4577  cmpt 4637   × cxp 5026  ran crn 5029  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  1st c1st 7034  2nd c2nd 7035  𝑚 cmap 7721  cr 9791  0cc0 9792  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  +crp 11664   +𝑒 cxad 11776  (,)cioo 12002  [,)cico 12004  [,]cicc 12005  cexp 12677  volcvol 22956  Σ^csumge0 39052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-rest 15852  df-topgen 15873  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-top 20463  df-bases 20464  df-topon 20465  df-cmp 20942  df-ovol 22957  df-vol 22958  df-sumge0 39053
This theorem is referenced by:  ovolval5lem3  39341
  Copyright terms: Public domain W3C validator