Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasmono Structured version   Visualization version   GIF version

Theorem pmeasmono 29519
Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeasmono.1 (𝜑𝐴𝑅)
pmeasmono.2 (𝜑𝐵𝑅)
pmeasmono.3 (𝜑 → (𝐵𝐴) ∈ 𝑅)
pmeasmono.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
pmeasmono (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem pmeasmono
StepHypRef Expression
1 eqimss 3619 . . . . . . 7 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
2 ssdifeq0 4002 . . . . . . 7 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
31, 2sylib 206 . . . . . 6 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
43fveq2d 6092 . . . . 5 (𝐴 = (𝐵𝐴) → (𝑃𝐴) = (𝑃‘∅))
54adantl 480 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = (𝑃‘∅))
6 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
76adantr 479 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃‘∅) = 0)
85, 7eqtrd 2643 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = 0)
9 caraext.1 . . . . . 6 (𝜑𝑃:𝑅⟶(0[,]+∞))
10 pmeasmono.2 . . . . . 6 (𝜑𝐵𝑅)
119, 10ffvelrnd 6253 . . . . 5 (𝜑 → (𝑃𝐵) ∈ (0[,]+∞))
12 elxrge0 12108 . . . . . 6 ((𝑃𝐵) ∈ (0[,]+∞) ↔ ((𝑃𝐵) ∈ ℝ* ∧ 0 ≤ (𝑃𝐵)))
1312simprbi 478 . . . . 5 ((𝑃𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃𝐵))
1411, 13syl 17 . . . 4 (𝜑 → 0 ≤ (𝑃𝐵))
1514adantr 479 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → 0 ≤ (𝑃𝐵))
168, 15eqbrtrd 4599 . 2 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
17 iccssxr 12083 . . . . 5 (0[,]+∞) ⊆ ℝ*
189adantr 479 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝑃:𝑅⟶(0[,]+∞))
19 pmeasmono.1 . . . . . . 7 (𝜑𝐴𝑅)
2019adantr 479 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴𝑅)
2118, 20ffvelrnd 6253 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ (0[,]+∞))
2217, 21sseldi 3565 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ ℝ*)
23 pmeasmono.3 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ 𝑅)
2423adantr 479 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝐵𝐴) ∈ 𝑅)
2518, 24ffvelrnd 6253 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞))
26 xrge0addge 28718 . . . 4 (((𝑃𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
2722, 25, 26syl2anc 690 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
28 prct 28681 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ≼ ω)
2919, 23, 28syl2anc 690 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
3029adantr 479 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ≼ ω)
31 prssi 4292 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3219, 23, 31syl2anc 690 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3332adantr 479 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
34 disjdif 3991 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
35 simpr 475 . . . . . . . 8 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴 ≠ (𝐵𝐴))
36 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
37 id 22 . . . . . . . . 9 (𝑦 = (𝐵𝐴) → 𝑦 = (𝐵𝐴))
3836, 37disjprg 4572 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
3920, 24, 35, 38syl3anc 1317 . . . . . . 7 ((𝜑𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
4034, 39mpbiri 246 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
4130, 33, 403jca 1234 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
42 prex 4831 . . . . . . 7 {𝐴, (𝐵𝐴)} ∈ V
43 biidd 250 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝜑𝜑))
44 breq1 4580 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵𝐴)} ≼ ω))
45 sseq1 3588 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥𝑅 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑅))
46 disjeq1 4554 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
4744, 45, 463anbi123d 1390 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)))
4843, 47anbi12d 742 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))))
49 unieq 4374 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → 𝑥 = {𝐴, (𝐵𝐴)})
5049fveq2d 6092 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑃 𝑥) = (𝑃 {𝐴, (𝐵𝐴)}))
51 esumeq1 29229 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5250, 51eqeq12d 2624 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5348, 52imbi12d 332 . . . . . . . 8 (𝑥 = {𝐴, (𝐵𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))))
54 caraext.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
5553, 54vtoclg 3238 . . . . . . 7 ({𝐴, (𝐵𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5642, 55ax-mp 5 . . . . . 6 ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5756adantlr 746 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5841, 57mpdan 698 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
59 uniprg 4380 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
6019, 23, 59syl2anc 690 . . . . . . 7 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
61 pmeasmono.4 . . . . . . . 8 (𝜑𝐴𝐵)
62 undif 4000 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6361, 62sylib 206 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6460, 63eqtrd 2643 . . . . . 6 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
6564adantr 479 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} = 𝐵)
6665fveq2d 6092 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = (𝑃𝐵))
67 simpr 475 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
6867fveq2d 6092 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → (𝑃𝑦) = (𝑃𝐴))
69 simpr 475 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → 𝑦 = (𝐵𝐴))
7069fveq2d 6092 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → (𝑃𝑦) = (𝑃‘(𝐵𝐴)))
7168, 70, 20, 24, 21, 25, 35esumpr 29261 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7258, 66, 713eqtr3d 2651 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐵) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7327, 72breqtrrd 4605 . 2 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
7416, 73pm2.61dane 2868 1 (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  Vcvv 3172  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  {cpr 4126   cuni 4366  Disj wdisj 4547   class class class wbr 4577  wf 5786  cfv 5790  (class class class)co 6527  ωcom 6934  cdom 7816  0cc0 9792  +∞cpnf 9927  *cxr 9929  cle 9931   +𝑒 cxad 11776  [,]cicc 12005  Σ*cesum 29222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-ordt 15930  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-ps 16969  df-tsr 16970  df-plusf 17010  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-mulg 17310  df-subg 17360  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-subrg 18547  df-abv 18586  df-lmod 18634  df-scaf 18635  df-sra 18939  df-rgmod 18940  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-tmd 21628  df-tgp 21629  df-tsms 21682  df-trg 21715  df-xms 21876  df-ms 21877  df-tms 21878  df-nm 22138  df-ngp 22139  df-nrg 22141  df-nlm 22142  df-ii 22419  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-esum 29223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator