Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfrec Structured version   Visualization version   GIF version

Theorem smfrec 43084
Description: The reciprocal of a sigma-measurable functions is sigma-measurable. First part of Proposition 121E (e) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfrec.x 𝑥𝜑
smfrec.s (𝜑𝑆 ∈ SAlg)
smfrec.a (𝜑𝐴𝑉)
smfrec.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfrec.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfrec.e 𝐶 = {𝑥𝐴𝐵 ≠ 0}
Assertion
Ref Expression
smfrec (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfrec.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfrec.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfrec.e . . . 4 𝐶 = {𝑥𝐴𝐵 ≠ 0}
5 ssrab2 4056 . . . 4 {𝑥𝐴𝐵 ≠ 0} ⊆ 𝐴
64, 5eqsstri 4001 . . 3 𝐶𝐴
7 eqid 2821 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfrec.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 41508 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2827 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfrec.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2821 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 43030 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 4005 . . 3 (𝜑𝐴 𝑆)
156, 14sstrid 3978 . 2 (𝜑𝐶 𝑆)
16 1red 10642 . . 3 ((𝜑𝑥𝐶) → 1 ∈ ℝ)
176sseli 3963 . . . . 5 (𝑥𝐶𝑥𝐴)
1817adantl 484 . . . 4 ((𝜑𝑥𝐶) → 𝑥𝐴)
1918, 8syldan 593 . . 3 ((𝜑𝑥𝐶) → 𝐵 ∈ ℝ)
204eleq2i 2904 . . . . . 6 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
2120biimpi 218 . . . . 5 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ 0})
22 rabidim2 41388 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 ≠ 0} → 𝐵 ≠ 0)
2321, 22syl 17 . . . 4 (𝑥𝐶𝐵 ≠ 0)
2423adantl 484 . . 3 ((𝜑𝑥𝐶) → 𝐵 ≠ 0)
2516, 19, 24redivcld 11468 . 2 ((𝜑𝑥𝐶) → (1 / 𝐵) ∈ ℝ)
26 nfv 1915 . . . . . . 7 𝑥 𝑎 ∈ ℝ
271, 26nfan 1900 . . . . . 6 𝑥(𝜑𝑎 ∈ ℝ)
28 nfv 1915 . . . . . 6 𝑥0 < 𝑎
2927, 28nfan 1900 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎)
3019ad4ant14 750 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
3123adantl 484 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
32 simpl 485 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ)
33 simpr 487 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 0 < 𝑎)
3432, 33elrpd 12429 . . . . . 6 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3534adantll 712 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑎 ∈ ℝ+)
3629, 30, 31, 35pimrecltpos 43007 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}))
37 smfrec.a . . . . . . . 8 (𝜑𝐴𝑉)
384, 37rabexd 5236 . . . . . . 7 (𝜑𝐶 ∈ V)
39 eqid 2821 . . . . . . 7 (𝑆t 𝐶) = (𝑆t 𝐶)
403, 38, 39subsalsal 42662 . . . . . 6 (𝜑 → (𝑆t 𝐶) ∈ SAlg)
4140ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑆t 𝐶) ∈ SAlg)
423adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4342adantr 483 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → 𝑆 ∈ SAlg)
446a1i 11 . . . . . . . . 9 (𝜑𝐶𝐴)
453, 11, 44sssmfmpt 43047 . . . . . . . 8 (𝜑 → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4645adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4746adantr 483 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
4834rprecred 12443 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
4948adantll 712 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → (1 / 𝑎) ∈ ℝ)
5029, 43, 30, 47, 49smfpimgtmpt 43077 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∈ (𝑆t 𝐶))
51 0red 10644 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
521, 3, 19, 45, 51smfpimltmpt 43043 . . . . . 6 (𝜑 → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5352ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
5441, 50, 53saluncld 42651 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → ({𝑥𝐶 ∣ (1 / 𝑎) < 𝐵} ∪ {𝑥𝐶𝐵 < 0}) ∈ (𝑆t 𝐶))
5536, 54eqeltrd 2913 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
56 nfv 1915 . . . . . . . 8 𝑥 𝑎 = 0
571, 56nfan 1900 . . . . . . 7 𝑥(𝜑𝑎 = 0)
58 breq2 5070 . . . . . . . . 9 (𝑎 = 0 → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
5958ad2antlr 725 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎 ↔ (1 / 𝐵) < 0))
6019, 24reclt0 41683 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
6160bicomd 225 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6261adantlr 713 . . . . . . . 8 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 0 ↔ 𝐵 < 0))
6359, 62bitrd 281 . . . . . . 7 (((𝜑𝑎 = 0) ∧ 𝑥𝐶) → ((1 / 𝐵) < 𝑎𝐵 < 0))
6457, 63rabbida 3474 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 < 0})
6552adantr 483 . . . . . 6 ((𝜑𝑎 = 0) → {𝑥𝐶𝐵 < 0} ∈ (𝑆t 𝐶))
6664, 65eqeltrd 2913 . . . . 5 ((𝜑𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
6766ad4ant14 750 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
68 simpll 765 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → (𝜑𝑎 ∈ ℝ))
69 simpll 765 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ∈ ℝ)
70 0red 10644 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 0 ∈ ℝ)
71 neqne 3024 . . . . . . . 8 𝑎 = 0 → 𝑎 ≠ 0)
7271adantl 484 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 ≠ 0)
73 simplr 767 . . . . . . 7 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → ¬ 0 < 𝑎)
7469, 70, 72, 73lttri5d 41586 . . . . . 6 (((𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
7574adantlll 716 . . . . 5 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → 𝑎 < 0)
76 nfv 1915 . . . . . . . 8 𝑥 𝑎 < 0
7727, 76nfan 1900 . . . . . . 7 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0)
788adantlr 713 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
7917, 78sylan2 594 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8079adantlr 713 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ∈ ℝ)
8123adantl 484 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) ∧ 𝑥𝐶) → 𝐵 ≠ 0)
82 simpr 487 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
8382adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
84 simpr 487 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑎 < 0)
8577, 80, 81, 83, 84pimrecltneg 43021 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} = {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)})
8642adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝑆 ∈ SAlg)
8738ad2antrr 724 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 𝐶 ∈ V)
8846adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (𝑥𝐶𝐵) ∈ (SMblFn‘𝑆))
89 1red 10642 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 1 ∈ ℝ)
90 simpl 485 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ∈ ℝ)
91 lt0ne0 11106 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → 𝑎 ≠ 0)
9289, 90, 91redivcld 11468 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9392adantll 712 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ)
9493rexrd 10691 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → (1 / 𝑎) ∈ ℝ*)
9551ad2antrr 724 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ)
9695rexrd 10691 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → 0 ∈ ℝ*)
9777, 86, 87, 80, 88, 94, 96smfpimioompt 43081 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶𝐵 ∈ ((1 / 𝑎)(,)0)} ∈ (𝑆t 𝐶))
9885, 97eqeltrd 2913 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 < 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
9968, 75, 98syl2anc 586 . . . 4 ((((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) ∧ ¬ 𝑎 = 0) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10067, 99pm2.61dan 811 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 0 < 𝑎) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
10155, 100pm2.61dan 811 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐶 ∣ (1 / 𝐵) < 𝑎} ∈ (𝑆t 𝐶))
1021, 2, 3, 15, 25, 101issmfdmpt 43045 1 (𝜑 → (𝑥𝐶 ↦ (1 / 𝐵)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  cun 3934  wss 3936   cuni 4838   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   < clt 10675   / cdiv 11297  +crp 12390  (,)cioo 12739  t crest 16694  SAlgcsalg 42613  SMblFncsmblfn 42997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fl 13163  df-rest 16696  df-salg 42614  df-smblfn 42998
This theorem is referenced by:  smfdiv  43092
  Copyright terms: Public domain W3C validator