HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem Structured version   Visualization version   GIF version

Theorem sumdmdlem 29144
Description: Lemma for sumdmdi 29146. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))

Proof of Theorem sumdmdlem
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3779 . . . 4 (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ↔ (𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴))
2 sumdmdi.2 . . . . . . . . 9 𝐵C
32chshii 27951 . . . . . . . 8 𝐵S
4 spansnsh 28287 . . . . . . . 8 (𝐶 ∈ ℋ → (span‘{𝐶}) ∈ S )
5 shsel 28040 . . . . . . . 8 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
63, 4, 5sylancr 694 . . . . . . 7 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
7 sumdmdi.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴C
87cheli 27956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴𝑦 ∈ ℋ)
92cheli 27956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝐵𝑧 ∈ ℋ)
10 elspansncl 28291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶})) → 𝑤 ∈ ℋ)
11 hvsubadd 27801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤 ↔ (𝑧 + 𝑤) = 𝑦))
12 eqcom 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
1311, 12syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
148, 9, 10, 13syl3an 1365 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵 ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
15143expa 1262 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
167chshii 27951 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴S
1716, 3shsvsi 28093 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) ∈ (𝐴 + 𝐵))
18 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 𝑧) = 𝑤 → ((𝑦 𝑧) ∈ (𝐴 + 𝐵) ↔ 𝑤 ∈ (𝐴 + 𝐵)))
1917, 18syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2115, 20sylbird 250 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))
2221exp32 630 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))))
2322com4r 94 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑧 + 𝑤) → ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))))
2423imp31 448 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝐶 ∈ ℋ) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2524adantrr 752 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2616, 3shscli 28043 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 + 𝐵) ∈ S
27 elspansn5 28300 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0))
2826, 27ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0)
2928exp32 630 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3029adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3125, 30mpdd 43 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 = 0))
32 oveq2 6618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 0 → (𝑧 + 𝑤) = (𝑧 + 0))
33 ax-hvaddid 27728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℋ → (𝑧 + 0) = 𝑧)
3432, 33sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℋ ∧ 𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
359, 34sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
3635eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3736adantll 749 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3837biimpac 503 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 = 𝑧)
39 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
4039biimparc 504 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑦 = 𝑧) → 𝑦𝐵)
41 elin 3779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵𝑦𝐴))
4241biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐵𝑦𝐴) → 𝑦 ∈ (𝐵𝐴))
4342ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑦𝐵) → 𝑦 ∈ (𝐵𝐴))
4440, 43sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ (𝑧𝐵𝑦 = 𝑧)) → 𝑦 ∈ (𝐵𝐴))
4544expr 642 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧𝐵) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4645ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4738, 46mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 ∈ (𝐵𝐴))
4847expr 642 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 = 0𝑦 ∈ (𝐵𝐴)))
4948a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5049adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5131, 50mpdd 43 . . . . . . . . . . . . . . . . 17 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴)))
5251ex 450 . . . . . . . . . . . . . . . 16 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴))))
5352com23 86 . . . . . . . . . . . . . . 15 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5453exp32 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑧 + 𝑤) → (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5554com4l 92 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5655imp4c 616 . . . . . . . . . . . 12 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5756exp4a 632 . . . . . . . . . . 11 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5857com23 86 . . . . . . . . . 10 (𝑦𝐴 → (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5958com4l 92 . . . . . . . . 9 (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6059expd 452 . . . . . . . 8 (𝐶 ∈ ℋ → ((𝑧𝐵𝑤 ∈ (span‘{𝐶})) → (𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴))))))
6160rexlimdvv 3031 . . . . . . 7 (𝐶 ∈ ℋ → (∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
626, 61sylbid 230 . . . . . 6 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6362com23 86 . . . . 5 (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6463imp4b 612 . . . 4 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐵𝐴)))
651, 64syl5bi 232 . . 3 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) → 𝑦 ∈ (𝐵𝐴)))
6665ssrdv 3593 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ⊆ (𝐵𝐴))
67 shsub1 28050 . . . . 5 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
683, 4, 67sylancr 694 . . . 4 (𝐶 ∈ ℋ → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
69 ssrin 3821 . . . 4 (𝐵 ⊆ (𝐵 + (span‘{𝐶})) → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7068, 69syl 17 . . 3 (𝐶 ∈ ℋ → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7170adantr 481 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7266, 71eqssd 3604 1 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  cin 3558  wss 3559  {csn 4153  cfv 5852  (class class class)co 6610  chil 27643   + cva 27644  0c0v 27648   cmv 27649   S csh 27652   C cch 27653   + cph 27655  spancspn 27656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cc 9208  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967  ax-hilex 27723  ax-hfvadd 27724  ax-hvcom 27725  ax-hvass 27726  ax-hv0cl 27727  ax-hvaddid 27728  ax-hfvmul 27729  ax-hvmulid 27730  ax-hvmulass 27731  ax-hvdistr1 27732  ax-hvdistr2 27733  ax-hvmul0 27734  ax-hfi 27803  ax-his1 27806  ax-his2 27807  ax-his3 27808  ax-his4 27809  ax-hcompl 27926
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-acn 8719  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-rlim 14161  df-sum 14358  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-cn 20950  df-cnp 20951  df-lm 20952  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cfil 22972  df-cau 22973  df-cmet 22974  df-grpo 27214  df-gid 27215  df-ginv 27216  df-gdiv 27217  df-ablo 27266  df-vc 27281  df-nv 27314  df-va 27317  df-ba 27318  df-sm 27319  df-0v 27320  df-vs 27321  df-nmcv 27322  df-ims 27323  df-dip 27423  df-ssp 27444  df-ph 27535  df-cbn 27586  df-hnorm 27692  df-hba 27693  df-hvsub 27695  df-hlim 27696  df-hcau 27697  df-sh 27931  df-ch 27945  df-oc 27976  df-ch0 27977  df-shs 28034  df-span 28035
This theorem is referenced by:  sumdmdlem2  29145
  Copyright terms: Public domain W3C validator