MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringndrg Structured version   Visualization version   GIF version

Theorem zringndrg 19757
Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.)
Assertion
Ref Expression
zringndrg ring ∉ DivRing

Proof of Theorem zringndrg
StepHypRef Expression
1 1ne2 11184 . . . . . . 7 1 ≠ 2
21nesymi 2847 . . . . . 6 ¬ 2 = 1
3 2re 11034 . . . . . . . 8 2 ∈ ℝ
4 0le2 11055 . . . . . . . 8 0 ≤ 2
5 absid 13970 . . . . . . . 8 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
63, 4, 5mp2an 707 . . . . . . 7 (abs‘2) = 2
76eqeq1i 2626 . . . . . 6 ((abs‘2) = 1 ↔ 2 = 1)
82, 7mtbir 313 . . . . 5 ¬ (abs‘2) = 1
98intnan 959 . . . 4 ¬ (2 ∈ ℤ ∧ (abs‘2) = 1)
10 zringunit 19755 . . . 4 (2 ∈ (Unit‘ℤring) ↔ (2 ∈ ℤ ∧ (abs‘2) = 1))
119, 10mtbir 313 . . 3 ¬ 2 ∈ (Unit‘ℤring)
12 zringbas 19743 . . . . 5 ℤ = (Base‘ℤring)
13 eqid 2621 . . . . 5 (Unit‘ℤring) = (Unit‘ℤring)
14 zring0 19747 . . . . 5 0 = (0g‘ℤring)
1512, 13, 14isdrng 18672 . . . 4 (ℤring ∈ DivRing ↔ (ℤring ∈ Ring ∧ (Unit‘ℤring) = (ℤ ∖ {0})))
16 2z 11353 . . . . . 6 2 ∈ ℤ
17 2ne0 11057 . . . . . 6 2 ≠ 0
18 eldifsn 4287 . . . . . 6 (2 ∈ (ℤ ∖ {0}) ↔ (2 ∈ ℤ ∧ 2 ≠ 0))
1916, 17, 18mpbir2an 954 . . . . 5 2 ∈ (ℤ ∖ {0})
20 id 22 . . . . 5 ((Unit‘ℤring) = (ℤ ∖ {0}) → (Unit‘ℤring) = (ℤ ∖ {0}))
2119, 20syl5eleqr 2705 . . . 4 ((Unit‘ℤring) = (ℤ ∖ {0}) → 2 ∈ (Unit‘ℤring))
2215, 21simplbiim 658 . . 3 (ℤring ∈ DivRing → 2 ∈ (Unit‘ℤring))
2311, 22mto 188 . 2 ¬ ℤring ∈ DivRing
2423nelir 2896 1 ring ∉ DivRing
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wne 2790  wnel 2893  cdif 3552  {csn 4148   class class class wbr 4613  cfv 5847  cr 9879  0cc0 9880  1c1 9881  cle 10019  2c2 11014  cz 11321  abscabs 13908  Ringcrg 18468  Unitcui 18560  DivRingcdr 18668  ringzring 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-gz 15558  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-subg 17512  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-subrg 18699  df-cnfld 19666  df-zring 19738
This theorem is referenced by:  zclmncvs  22856
  Copyright terms: Public domain W3C validator