MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 20635
Description: The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 20623 . . . 4 ℤ = (Base‘ℤring)
2 eqid 2821 . . . 4 (Unit‘ℤring) = (Unit‘ℤring)
31, 2unitcl 19409 . . 3 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ ℤ)
4 zsubrg 20598 . . . . . . 7 ℤ ∈ (SubRing‘ℂfld)
5 zgz 16269 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i])
65ssriv 3971 . . . . . . 7 ℤ ⊆ ℤ[i]
7 gzsubrg 20599 . . . . . . . 8 ℤ[i] ∈ (SubRing‘ℂfld)
8 eqid 2821 . . . . . . . . 9 (ℂflds ℤ[i]) = (ℂflds ℤ[i])
98subsubrg 19561 . . . . . . . 8 (ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i])))
107, 9ax-mp 5 . . . . . . 7 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]))
114, 6, 10mpbir2an 709 . . . . . 6 ℤ ∈ (SubRing‘(ℂflds ℤ[i]))
12 df-zring 20618 . . . . . . . 8 ring = (ℂflds ℤ)
13 ressabs 16563 . . . . . . . . 9 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]) → ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ))
147, 6, 13mp2an 690 . . . . . . . 8 ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ)
1512, 14eqtr4i 2847 . . . . . . 7 ring = ((ℂflds ℤ[i]) ↾s ℤ)
16 eqid 2821 . . . . . . 7 (Unit‘(ℂflds ℤ[i])) = (Unit‘(ℂflds ℤ[i]))
1715, 16, 2subrguss 19550 . . . . . 6 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) → (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i])))
1811, 17ax-mp 5 . . . . 5 (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i]))
1918sseli 3963 . . . 4 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂflds ℤ[i])))
208gzrngunit 20611 . . . . 5 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
2120simprbi 499 . . . 4 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) → (abs‘𝐴) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unit‘ℤring) → (abs‘𝐴) = 1)
233, 22jca 514 . 2 (𝐴 ∈ (Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
24 zcn 11987 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 483 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
26 simpr 487 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
27 ax-1ne0 10606 . . . . . . 7 1 ≠ 0
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
2926, 28eqnetrd 3083 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
30 fveq2 6670 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
31 abs0 14645 . . . . . . 7 (abs‘0) = 0
3230, 31syl6eq 2872 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
3332necon3i 3048 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
35 eldifsn 4719 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3625, 34, 35sylanbrc 585 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
37 simpl 485 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ)
38 cnfldinv 20576 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
3925, 34, 38syl2anc 586 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
40 zre 11986 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4140adantr 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℝ)
42 absresq 14662 . . . . . . . 8 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴↑2))
4426oveq1d 7171 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 13559 . . . . . . . 8 (1↑2) = 1
4644, 45syl6eq 2872 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
4725sqvald 13508 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴↑2) = (𝐴 · 𝐴))
4843, 46, 473eqtr3rd 2865 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴 · 𝐴) = 1)
49 1cnd 10636 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℂ)
5049, 25, 25, 34divmuld 11438 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1))
5148, 50mpbird 259 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2856 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = 𝐴)
5352, 37eqeltrd 2913 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ)
54 cnfldbas 20549 . . . . . 6 ℂ = (Base‘ℂfld)
55 cnfld0 20569 . . . . . 6 0 = (0g‘ℂfld)
56 cndrng 20574 . . . . . 6 fld ∈ DivRing
5754, 55, 56drngui 19508 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
58 eqid 2821 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
5912, 57, 2, 58subrgunit 19553 . . . 4 (ℤ ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ))
6136, 37, 53, 60syl3anbrc 1339 . 2 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘ℤring))
6223, 61impbii 211 1 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  wss 3936  {csn 4567  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   / cdiv 11297  2c2 11693  cz 11982  cexp 13430  abscabs 14593  ℤ[i]cgz 16265  s cress 16484  Unitcui 19389  invrcinvr 19421  SubRingcsubrg 19531  fldccnfld 20545  ringzring 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-gz 16266  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-subrg 19533  df-cnfld 20546  df-zring 20618
This theorem is referenced by:  zringndrg  20637  prmirredlem  20640  qqhval2lem  31222
  Copyright terms: Public domain W3C validator