ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cnALT Unicode version

Theorem 0cnALT 8088
Description: Alternate proof of 0cn 7891. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT  |-  0  e.  CC

Proof of Theorem 0cnALT
StepHypRef Expression
1 ax-icn 7848 . . 3  |-  _i  e.  CC
2 cnegex 8076 . . 3  |-  ( _i  e.  CC  ->  E. x  e.  CC  ( _i  +  x )  =  0 )
31, 2ax-mp 5 . 2  |-  E. x  e.  CC  ( _i  +  x )  =  0
4 addcl 7878 . . . . 5  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  +  x
)  e.  CC )
51, 4mpan 421 . . . 4  |-  ( x  e.  CC  ->  (
_i  +  x )  e.  CC )
6 eleq1 2229 . . . 4  |-  ( ( _i  +  x )  =  0  ->  (
( _i  +  x
)  e.  CC  <->  0  e.  CC ) )
75, 6syl5ibcom 154 . . 3  |-  ( x  e.  CC  ->  (
( _i  +  x
)  =  0  -> 
0  e.  CC ) )
87rexlimiv 2577 . 2  |-  ( E. x  e.  CC  (
_i  +  x )  =  0  ->  0  e.  CC )
93, 8ax-mp 5 1  |-  0  e.  CC
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   E.wrex 2445  (class class class)co 5842   CCcc 7751   0cc0 7753   _ici 7755    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator