Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0cnALT | GIF version |
Description: Alternate proof of 0cn 7891. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnALT | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7848 | . . 3 ⊢ i ∈ ℂ | |
2 | cnegex 8076 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ ℂ (i + 𝑥) = 0 |
4 | addcl 7878 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ) | |
5 | 1, 4 | mpan 421 | . . . 4 ⊢ (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ) |
6 | eleq1 2229 | . . . 4 ⊢ ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ)) | |
7 | 5, 6 | syl5ibcom 154 | . . 3 ⊢ (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ)) |
8 | 7 | rexlimiv 2577 | . 2 ⊢ (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ) |
9 | 3, 8 | ax-mp 5 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∃wrex 2445 (class class class)co 5842 ℂcc 7751 0cc0 7753 ici 7755 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |