| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0cnALT | GIF version | ||
| Description: Alternate proof of 0cn 8018. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 0cnALT | ⊢ 0 ∈ ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-icn 7974 | . . 3 ⊢ i ∈ ℂ | |
| 2 | cnegex 8204 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ ℂ (i + 𝑥) = 0 | 
| 4 | addcl 8004 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ) | |
| 5 | 1, 4 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ) | 
| 6 | eleq1 2259 | . . . 4 ⊢ ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ)) | |
| 7 | 5, 6 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ)) | 
| 8 | 7 | rexlimiv 2608 | . 2 ⊢ (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ) | 
| 9 | 3, 8 | ax-mp 5 | 1 ⊢ 0 ∈ ℂ | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 (class class class)co 5922 ℂcc 7877 0cc0 7879 ici 7881 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |