![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnALT | GIF version |
Description: Alternate proof of 0cn 8013. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnALT | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7969 | . . 3 ⊢ i ∈ ℂ | |
2 | cnegex 8199 | . . 3 ⊢ (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ ℂ (i + 𝑥) = 0 |
4 | addcl 7999 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ) | |
5 | 1, 4 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ) |
6 | eleq1 2256 | . . . 4 ⊢ ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ)) | |
7 | 5, 6 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ)) |
8 | 7 | rexlimiv 2605 | . 2 ⊢ (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ) |
9 | 3, 8 | ax-mp 5 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∃wrex 2473 (class class class)co 5919 ℂcc 7872 0cc0 7874 ici 7876 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |