ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cnALT GIF version

Theorem 0cnALT 8147
Description: Alternate proof of 0cn 7949. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT 0 ∈ ℂ

Proof of Theorem 0cnALT
StepHypRef Expression
1 ax-icn 7906 . . 3 i ∈ ℂ
2 cnegex 8135 . . 3 (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0)
31, 2ax-mp 5 . 2 𝑥 ∈ ℂ (i + 𝑥) = 0
4 addcl 7936 . . . . 5 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ)
51, 4mpan 424 . . . 4 (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ)
6 eleq1 2240 . . . 4 ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ))
75, 6syl5ibcom 155 . . 3 (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ))
87rexlimiv 2588 . 2 (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ)
93, 8ax-mp 5 1 0 ∈ ℂ
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  wrex 2456  (class class class)co 5875  cc 7809  0cc0 7811  ici 7813   + caddc 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator