ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexuz Unicode version

Theorem 2rexuz 9553
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
Assertion
Ref Expression
2rexuz  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph ) )
Distinct variable group:    m, n
Allowed substitution hints:    ph( m, n)

Proof of Theorem 2rexuz
StepHypRef Expression
1 rexuz2 9552 . . 3  |-  ( E. n  e.  ( ZZ>= `  m ) ph  <->  ( m  e.  ZZ  /\  E. n  e.  ZZ  ( m  <_  n  /\  ph ) ) )
21exbii 1603 . 2  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  (
m  <_  n  /\  ph ) ) )
3 df-rex 2459 . 2  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph )  <->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  (
m  <_  n  /\  ph ) ) )
42, 3bitr4i 187 1  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1490    e. wcel 2146   E.wrex 2454   class class class wbr 3998   ` cfv 5208    <_ cle 7967   ZZcz 9224   ZZ>=cuz 9499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-neg 8105  df-z 9225  df-uz 9500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator