ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexuz Unicode version

Theorem 2rexuz 9650
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
Assertion
Ref Expression
2rexuz  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph ) )
Distinct variable group:    m, n
Allowed substitution hints:    ph( m, n)

Proof of Theorem 2rexuz
StepHypRef Expression
1 rexuz2 9649 . . 3  |-  ( E. n  e.  ( ZZ>= `  m ) ph  <->  ( m  e.  ZZ  /\  E. n  e.  ZZ  ( m  <_  n  /\  ph ) ) )
21exbii 1616 . 2  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  (
m  <_  n  /\  ph ) ) )
3 df-rex 2478 . 2  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph )  <->  E. m ( m  e.  ZZ  /\  E. n  e.  ZZ  (
m  <_  n  /\  ph ) ) )
42, 3bitr4i 187 1  |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph 
<->  E. m  e.  ZZ  E. n  e.  ZZ  (
m  <_  n  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   E.wrex 2473   class class class wbr 4030   ` cfv 5255    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-neg 8195  df-z 9321  df-uz 9596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator