HomeHome Intuitionistic Logic Explorer
Theorem List (p. 96 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9501-9600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeluz4eluz2 9501 An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  ( ZZ>= `  2 ) )
 
Theoremeluz4nn 9502 An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.)
 |-  ( X  e.  ( ZZ>=
 `  4 )  ->  X  e.  NN )
 
Theoremeluzge2nn0 9503 If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  e.  NN0 )
 
Theoremeluz2n0 9504 An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  =/=  0 )
 
Theoremuzuzle23 9505 An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( A  e.  ( ZZ>=
 `  3 )  ->  A  e.  ( ZZ>= `  2 ) )
 
Theoremeluzge3nn 9506 If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  N  e.  NN )
 
Theoremuz3m2nn 9507 An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  ( N  -  2
 )  e.  NN )
 
Theorem1eluzge0 9508 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  1  e.  ( ZZ>= `  0 )
 
Theorem2eluzge0 9509 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  2  e.  ( ZZ>= `  0 )
 
Theorem2eluzge1 9510 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  2  e.  ( ZZ>= `  1 )
 
Theoremuznnssnn 9511 The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( N  e.  NN  ->  ( ZZ>= `  N )  C_ 
 NN )
 
Theoremraluz 9512* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremraluz2 9513* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( A. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremrexuz 9514* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theoremrexuz2 9515* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( E. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  /\ 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theorem2rexuz 9516* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
 |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph  <->  E. m  e.  ZZ  E. n  e.  ZZ  ( m  <_  n  /\  ph )
 )
 
Theorempeano2uz 9517 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  M ) )
 
Theorempeano2uzs 9518 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
 
Theorempeano2uzr 9519 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  N  e.  ( ZZ>= `  M ) )
 
Theoremuzaddcl 9520 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M ) )
 
Theoremnn0pzuz 9521 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( ( N  e.  NN0  /\  Z  e.  ZZ )  ->  ( N  +  Z )  e.  ( ZZ>= `  Z ) )
 
Theoremuzind4 9522* Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ta )
 
Theoremuzind4ALT 9523* Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9522 or uzind4ALT 9523 may be used; see comment for nnind 8869. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   &    |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremuzind4s 9524* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  k ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ph  ->  [. (
 k  +  1 ) 
 /  k ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  k ]. ph )
 
Theoremuzind4s2 9525* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9524 when  j and  k must be distinct in  [. ( k  +  1 )  /  j ]. ph. (Contributed by NM, 16-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  j ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( [. k  /  j ]. ph  ->  [. (
 k  +  1 ) 
 /  j ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  j ]. ph )
 
Theoremuzind4i 9526* Induction on the upper integers that start at  M. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9522 assuming that  ps holds unconditionally. Notice that  N  e.  (
ZZ>= `  M ) implies that the lower bound  M is an integer ( M  e.  ZZ, see eluzel2 9467). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 k  e.  ( ZZ>= `  M )  ->  ( ch 
 ->  th ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremindstr 9527* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
 )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoreminfrenegsupex 9528* The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( {
 z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
 )
 
Theoremsupinfneg 9529* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9547. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
 y ) ) )
 
Theoreminfsupneg 9530* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9529. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
 z ) ) )
 
Theoremsupminfex 9531* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
 
Theoreminfregelbex 9532* Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <_ inf ( A ,  RR ,  <  )  <->  A. z  e.  A  B  <_  z ) )
 
Theoremeluznn0 9533 Membership in a nonnegative upper set of integers implies membership in  NN0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
 
Theoremeluznn 9534 Membership in a positive upper set of integers implies membership in  NN. (Contributed by JJ, 1-Oct-2018.)
 |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  NN )
 
Theoremeluz2b1 9535 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  ZZ  /\  1  <  N ) )
 
Theoremeluz2gt1 9536 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  -> 
 1  <  N )
 
Theoremeluz2b2 9537 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  1  <  N ) )
 
Theoremeluz2b3 9538 Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  N  =/=  1
 ) )
 
Theoremuz2m1nn 9539 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( N  -  1
 )  e.  NN )
 
Theorem1nuz2 9540 1 is not in  ( ZZ>= `  2
). (Contributed by Paul Chapman, 21-Nov-2012.)
 |- 
 -.  1  e.  ( ZZ>=
 `  2 )
 
Theoremelnn1uz2 9541 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 ) ) )
 
Theoremuz2mulcl 9542 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ( ZZ>= `  2 )  /\  N  e.  ( ZZ>= `  2 ) )  ->  ( M  x.  N )  e.  ( ZZ>= `  2 ) )
 
Theoremindstr2 9543* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
 |-  ( x  =  1 
 ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ch   &    |-  ( x  e.  ( ZZ>= `  2 )  ->  ( A. y  e.  NN  (
 y  <  x  ->  ps )  ->  ph ) )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoremeluzdc 9544 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M ) )
 
Theoremelnn0dc 9545 Membership of an integer in  NN0 is decidable. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN0 )
 
Theoremelnndc 9546 Membership of an integer in  NN is decidable. (Contributed by Jim Kingdon, 17-Oct-2024.)
 |-  ( N  e.  ZZ  -> DECID  N  e.  NN )
 
Theoremublbneg 9547* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9529. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( E. x  e. 
 RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
 { z  e.  RR  |  -u z  e.  A } x  <_  y )
 
Theoremeqreznegel 9548* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
 
Theoremnegm 9549* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
 |-  ( ( A  C_  RR  /\  E. x  x  e.  A )  ->  E. y  y  e.  { z  e.  RR  |  -u z  e.  A }
 )
 
Theoremlbzbi 9550* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  RR  ->  ( E. x  e. 
 RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
 
Theoremnn01to3 9551 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
 |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
 
Theoremnn0ge2m1nnALT 9552 Alternate proof of nn0ge2m1nn 9170: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9468, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9170. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( N  e.  NN0  /\  2  <_  N ) 
 ->  ( N  -  1
 )  e.  NN )
 
4.4.12  Rational numbers (as a subset of complex numbers)
 
Syntaxcq 9553 Extend class notation to include the class of rationals.
 class  QQ
 
Definitiondf-q 9554 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 9556 for the relation "is rational". (Contributed by NM, 8-Jan-2002.)
 |- 
 QQ  =  (  /  " ( ZZ  X.  NN ) )
 
Theoremdivfnzn 9555 Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  (  /  |`  ( ZZ 
 X.  NN ) )  Fn  ( ZZ  X.  NN )
 
Theoremelq 9556* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
 |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
 
Theoremqmulz 9557* If  A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
 |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
 
Theoremznq 9558 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
 
Theoremqre 9559 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
 |-  ( A  e.  QQ  ->  A  e.  RR )
 
Theoremzq 9560 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
 |-  ( A  e.  ZZ  ->  A  e.  QQ )
 
Theoremzssq 9561 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
 |- 
 ZZ  C_  QQ
 
Theoremnn0ssq 9562 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN0  C_  QQ
 
Theoremnnssq 9563 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN  C_  QQ
 
Theoremqssre 9564 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
 |- 
 QQ  C_  RR
 
Theoremqsscn 9565 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
 |- 
 QQ  C_  CC
 
Theoremqex 9566 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 QQ  e.  _V
 
Theoremnnq 9567 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  A  e.  QQ )
 
Theoremqcn 9568 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
 |-  ( A  e.  QQ  ->  A  e.  CC )
 
Theoremqaddcl 9569 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B )  e.  QQ )
 
Theoremqnegcl 9570 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  QQ  -> 
 -u A  e.  QQ )
 
Theoremqmulcl 9571 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B )  e.  QQ )
 
Theoremqsubcl 9572 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B )  e.  QQ )
 
Theoremqapne 9573 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
 
Theoremqltlen 9574 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8526 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremqlttri2 9575 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =/=  B  <-> 
 ( A  <  B  \/  B  <  A ) ) )
 
Theoremqreccl 9576 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  A  =/=  0
 )  ->  ( 1  /  A )  e.  QQ )
 
Theoremqdivcl 9577 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 ) 
 ->  ( A  /  B )  e.  QQ )
 
Theoremqrevaddcl 9578 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( B  e.  QQ  ->  ( ( A  e.  CC  /\  ( A  +  B )  e.  QQ ) 
 <->  A  e.  QQ )
 )
 
Theoremnnrecq 9579 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  ( 1  /  A )  e.  QQ )
 
Theoremirradd 9580 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ )  ->  ( A  +  B )  e.  ( RR  \  QQ ) )
 
Theoremirrmul 9581 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
 
Theoremelpq 9582* A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( A  e.  QQ  /\  0  <  A )  ->  E. x  e.  NN  E. y  e.  NN  A  =  ( x  /  y
 ) )
 
Theoremelpqb 9583* A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
 |-  ( ( A  e.  QQ  /\  0  <  A ) 
 <-> 
 E. x  e.  NN  E. y  e.  NN  A  =  ( x  /  y
 ) )
 
4.4.13  Complex numbers as pairs of reals
 
Theoremcnref1o 9584* There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 7755), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  F : ( RR  X.  RR ) -1-1-onto-> CC
 
4.5  Order sets
 
4.5.1  Positive reals (as a subset of complex numbers)
 
Syntaxcrp 9585 Extend class notation to include the class of positive reals.
 class  RR+
 
Definitiondf-rp 9586 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  RR+  =  { x  e. 
 RR  |  0  < 
 x }
 
Theoremelrp 9587 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremelrpii 9588 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  A  e.  RR+
 
Theorem1rp 9589 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  1  e.  RR+
 
Theorem2rp 9590 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  2  e.  RR+
 
Theorem3rp 9591 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  3  e.  RR+
 
Theoremrpre 9592 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  ->  A  e.  RR )
 
Theoremrpxr 9593 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( A  e.  RR+  ->  A  e.  RR* )
 
Theoremrpcn 9594 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  A  e.  CC )
 
Theoremnnrp 9595 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
 |-  ( A  e.  NN  ->  A  e.  RR+ )
 
Theoremrpssre 9596 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
 |-  RR+  C_  RR
 
Theoremrpgt0 9597 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
 |-  ( A  e.  RR+  -> 
 0  <  A )
 
Theoremrpge0 9598 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  -> 
 0  <_  A )
 
Theoremrpregt0 9599 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0 9600 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >