| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . 3
| |
| 2 | peano2z 9478 |
. . . 4
| |
| 3 | 2 | 3ad2ant2 1043 |
. . 3
|
| 4 | zre 9446 |
. . . 4
| |
| 5 | zre 9446 |
. . . . 5
| |
| 6 | letrp1 8991 |
. . . . 5
| |
| 7 | 5, 6 | syl3an2 1305 |
. . . 4
|
| 8 | 4, 7 | syl3an1 1304 |
. . 3
|
| 9 | 1, 3, 8 | 3jca 1201 |
. 2
|
| 10 | eluz2 9724 |
. 2
| |
| 11 | eluz2 9724 |
. 2
| |
| 12 | 9, 10, 11 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: peano2uzs 9775 peano2uzr 9776 uzaddcl 9777 fzsplit 10243 fzssp1 10259 fzsuc 10261 fzpred 10262 fzp1ss 10265 fzp1elp1 10267 fztp 10270 fzneuz 10293 fzosplitsnm1 10410 fzofzp1 10428 fzosplitsn 10434 fzostep1 10438 zsupcllemstep 10444 infssuzex 10448 frec2uzuzd 10619 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgg 10633 frecuzrdgsuctlem 10640 frecfzen2 10644 fzfig 10647 uzsinds 10661 iseqovex 10675 seq3val 10677 seqvalcd 10678 seqf 10681 seq3p1 10682 seq3split 10705 seqsplitg 10706 seqf1oglem1 10736 seqf1oglem2 10737 seq3homo 10744 seq3z 10745 ser3ge0 10753 faclbnd3 10960 bcm1k 10977 seq3coll 11059 swrds1 11195 pfxccatpfx2 11264 clim2ser 11843 clim2ser2 11844 serf0 11858 fsump1 11926 fsump1i 11939 fsumparts 11976 isum1p 11998 cvgratnnlemmn 12031 mertenslemi1 12041 clim2prod 12045 clim2divap 12046 fprodntrivap 12090 fprodp1 12106 fprodabs 12122 pcfac 12868 gsumsplit1r 13426 gsumprval 13427 gsumfzconst 13873 gsumfzfsumlemm 14545 dvply2g 15434 |
| Copyright terms: Public domain | W3C validator |