| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| peano2uz | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 999 | 
. . 3
 | |
| 2 | peano2z 9362 | 
. . . 4
 | |
| 3 | 2 | 3ad2ant2 1021 | 
. . 3
 | 
| 4 | zre 9330 | 
. . . 4
 | |
| 5 | zre 9330 | 
. . . . 5
 | |
| 6 | letrp1 8875 | 
. . . . 5
 | |
| 7 | 5, 6 | syl3an2 1283 | 
. . . 4
 | 
| 8 | 4, 7 | syl3an1 1282 | 
. . 3
 | 
| 9 | 1, 3, 8 | 3jca 1179 | 
. 2
 | 
| 10 | eluz2 9607 | 
. 2
 | |
| 11 | eluz2 9607 | 
. 2
 | |
| 12 | 9, 10, 11 | 3imtr4i 201 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: peano2uzs 9658 peano2uzr 9659 uzaddcl 9660 fzsplit 10126 fzssp1 10142 fzsuc 10144 fzpred 10145 fzp1ss 10148 fzp1elp1 10150 fztp 10153 fzneuz 10176 fzosplitsnm1 10285 fzofzp1 10303 fzosplitsn 10309 fzostep1 10313 zsupcllemstep 10319 infssuzex 10323 frec2uzuzd 10494 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 frecuzrdgsuctlem 10515 frecfzen2 10519 fzfig 10522 uzsinds 10536 iseqovex 10550 seq3val 10552 seqvalcd 10553 seqf 10556 seq3p1 10557 seq3split 10580 seqsplitg 10581 seqf1oglem1 10611 seqf1oglem2 10612 seq3homo 10619 seq3z 10620 ser3ge0 10628 faclbnd3 10835 bcm1k 10852 seq3coll 10934 clim2ser 11502 clim2ser2 11503 serf0 11517 fsump1 11585 fsump1i 11598 fsumparts 11635 isum1p 11657 cvgratnnlemmn 11690 mertenslemi1 11700 clim2prod 11704 clim2divap 11705 fprodntrivap 11749 fprodp1 11765 fprodabs 11781 pcfac 12519 gsumsplit1r 13041 gsumprval 13042 gsumfzconst 13471 gsumfzfsumlemm 14143 dvply2g 15002 | 
| Copyright terms: Public domain | W3C validator |