Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . 3 | |
2 | peano2z 9241 | . . . 4 | |
3 | 2 | 3ad2ant2 1014 | . . 3 |
4 | zre 9209 | . . . 4 | |
5 | zre 9209 | . . . . 5 | |
6 | letrp1 8757 | . . . . 5 | |
7 | 5, 6 | syl3an2 1267 | . . . 4 |
8 | 4, 7 | syl3an1 1266 | . . 3 |
9 | 1, 3, 8 | 3jca 1172 | . 2 |
10 | eluz2 9486 | . 2 | |
11 | eluz2 9486 | . 2 | |
12 | 9, 10, 11 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wcel 2141 class class class wbr 3987 cfv 5196 (class class class)co 5851 cr 7766 c1 7768 caddc 7770 cle 7948 cz 9205 cuz 9480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 |
This theorem is referenced by: peano2uzs 9536 peano2uzr 9537 uzaddcl 9538 fzsplit 10000 fzssp1 10016 fzsuc 10018 fzpred 10019 fzp1ss 10022 fzp1elp1 10024 fztp 10027 fzneuz 10050 fzosplitsnm1 10158 fzofzp1 10176 fzosplitsn 10182 fzostep1 10186 frec2uzuzd 10351 frecuzrdgrrn 10357 frec2uzrdg 10358 frecuzrdgrcl 10359 frecuzrdgsuc 10363 frecuzrdgrclt 10364 frecuzrdgg 10365 frecuzrdgsuctlem 10372 frecfzen2 10376 fzfig 10379 uzsinds 10391 iseqovex 10405 seq3val 10407 seqvalcd 10408 seqf 10410 seq3p1 10411 seq3split 10428 seq3homo 10459 seq3z 10460 ser3ge0 10466 faclbnd3 10670 bcm1k 10687 seq3coll 10770 clim2ser 11293 clim2ser2 11294 serf0 11308 fsump1 11376 fsump1i 11389 fsumparts 11426 isum1p 11448 cvgratnnlemmn 11481 mertenslemi1 11491 clim2prod 11495 clim2divap 11496 fprodntrivap 11540 fprodp1 11556 fprodabs 11572 zsupcllemstep 11893 infssuzex 11897 pcfac 12295 |
Copyright terms: Public domain | W3C validator |