| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | peano2z 9408 |
. . . 4
| |
| 3 | 2 | 3ad2ant2 1022 |
. . 3
|
| 4 | zre 9376 |
. . . 4
| |
| 5 | zre 9376 |
. . . . 5
| |
| 6 | letrp1 8921 |
. . . . 5
| |
| 7 | 5, 6 | syl3an2 1284 |
. . . 4
|
| 8 | 4, 7 | syl3an1 1283 |
. . 3
|
| 9 | 1, 3, 8 | 3jca 1180 |
. 2
|
| 10 | eluz2 9654 |
. 2
| |
| 11 | eluz2 9654 |
. 2
| |
| 12 | 9, 10, 11 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: peano2uzs 9705 peano2uzr 9706 uzaddcl 9707 fzsplit 10173 fzssp1 10189 fzsuc 10191 fzpred 10192 fzp1ss 10195 fzp1elp1 10197 fztp 10200 fzneuz 10223 fzosplitsnm1 10338 fzofzp1 10356 fzosplitsn 10362 fzostep1 10366 zsupcllemstep 10372 infssuzex 10376 frec2uzuzd 10547 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgg 10561 frecuzrdgsuctlem 10568 frecfzen2 10572 fzfig 10575 uzsinds 10589 iseqovex 10603 seq3val 10605 seqvalcd 10606 seqf 10609 seq3p1 10610 seq3split 10633 seqsplitg 10634 seqf1oglem1 10664 seqf1oglem2 10665 seq3homo 10672 seq3z 10673 ser3ge0 10681 faclbnd3 10888 bcm1k 10905 seq3coll 10987 swrds1 11121 clim2ser 11648 clim2ser2 11649 serf0 11663 fsump1 11731 fsump1i 11744 fsumparts 11781 isum1p 11803 cvgratnnlemmn 11836 mertenslemi1 11846 clim2prod 11850 clim2divap 11851 fprodntrivap 11895 fprodp1 11911 fprodabs 11927 pcfac 12673 gsumsplit1r 13230 gsumprval 13231 gsumfzconst 13677 gsumfzfsumlemm 14349 dvply2g 15238 |
| Copyright terms: Public domain | W3C validator |