| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | peano2z 9443 |
. . . 4
| |
| 3 | 2 | 3ad2ant2 1022 |
. . 3
|
| 4 | zre 9411 |
. . . 4
| |
| 5 | zre 9411 |
. . . . 5
| |
| 6 | letrp1 8956 |
. . . . 5
| |
| 7 | 5, 6 | syl3an2 1284 |
. . . 4
|
| 8 | 4, 7 | syl3an1 1283 |
. . 3
|
| 9 | 1, 3, 8 | 3jca 1180 |
. 2
|
| 10 | eluz2 9689 |
. 2
| |
| 11 | eluz2 9689 |
. 2
| |
| 12 | 9, 10, 11 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: peano2uzs 9740 peano2uzr 9741 uzaddcl 9742 fzsplit 10208 fzssp1 10224 fzsuc 10226 fzpred 10227 fzp1ss 10230 fzp1elp1 10232 fztp 10235 fzneuz 10258 fzosplitsnm1 10375 fzofzp1 10393 fzosplitsn 10399 fzostep1 10403 zsupcllemstep 10409 infssuzex 10413 frec2uzuzd 10584 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgg 10598 frecuzrdgsuctlem 10605 frecfzen2 10609 fzfig 10612 uzsinds 10626 iseqovex 10640 seq3val 10642 seqvalcd 10643 seqf 10646 seq3p1 10647 seq3split 10670 seqsplitg 10671 seqf1oglem1 10701 seqf1oglem2 10702 seq3homo 10709 seq3z 10710 ser3ge0 10718 faclbnd3 10925 bcm1k 10942 seq3coll 11024 swrds1 11159 pfxccatpfx2 11228 clim2ser 11763 clim2ser2 11764 serf0 11778 fsump1 11846 fsump1i 11859 fsumparts 11896 isum1p 11918 cvgratnnlemmn 11951 mertenslemi1 11961 clim2prod 11965 clim2divap 11966 fprodntrivap 12010 fprodp1 12026 fprodabs 12042 pcfac 12788 gsumsplit1r 13345 gsumprval 13346 gsumfzconst 13792 gsumfzfsumlemm 14464 dvply2g 15353 |
| Copyright terms: Public domain | W3C validator |