| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz | Unicode version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . 3
| |
| 2 | peano2z 9381 |
. . . 4
| |
| 3 | 2 | 3ad2ant2 1021 |
. . 3
|
| 4 | zre 9349 |
. . . 4
| |
| 5 | zre 9349 |
. . . . 5
| |
| 6 | letrp1 8894 |
. . . . 5
| |
| 7 | 5, 6 | syl3an2 1283 |
. . . 4
|
| 8 | 4, 7 | syl3an1 1282 |
. . 3
|
| 9 | 1, 3, 8 | 3jca 1179 |
. 2
|
| 10 | eluz2 9626 |
. 2
| |
| 11 | eluz2 9626 |
. 2
| |
| 12 | 9, 10, 11 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 |
| This theorem is referenced by: peano2uzs 9677 peano2uzr 9678 uzaddcl 9679 fzsplit 10145 fzssp1 10161 fzsuc 10163 fzpred 10164 fzp1ss 10167 fzp1elp1 10169 fztp 10172 fzneuz 10195 fzosplitsnm1 10304 fzofzp1 10322 fzosplitsn 10328 fzostep1 10332 zsupcllemstep 10338 infssuzex 10342 frec2uzuzd 10513 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgsuc 10525 frecuzrdgrclt 10526 frecuzrdgg 10527 frecuzrdgsuctlem 10534 frecfzen2 10538 fzfig 10541 uzsinds 10555 iseqovex 10569 seq3val 10571 seqvalcd 10572 seqf 10575 seq3p1 10576 seq3split 10599 seqsplitg 10600 seqf1oglem1 10630 seqf1oglem2 10631 seq3homo 10638 seq3z 10639 ser3ge0 10647 faclbnd3 10854 bcm1k 10871 seq3coll 10953 clim2ser 11521 clim2ser2 11522 serf0 11536 fsump1 11604 fsump1i 11617 fsumparts 11654 isum1p 11676 cvgratnnlemmn 11709 mertenslemi1 11719 clim2prod 11723 clim2divap 11724 fprodntrivap 11768 fprodp1 11784 fprodabs 11800 pcfac 12546 gsumsplit1r 13102 gsumprval 13103 gsumfzconst 13549 gsumfzfsumlemm 14221 dvply2g 15110 |
| Copyright terms: Public domain | W3C validator |