ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexuz GIF version

Theorem 2rexuz 9002
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
Assertion
Ref Expression
2rexuz (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem 2rexuz
StepHypRef Expression
1 rexuz2 9001 . . 3 (∃𝑛 ∈ (ℤ𝑚)𝜑 ↔ (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
21exbii 1539 . 2 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
3 df-rex 2361 . 2 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
42, 3bitr4i 185 1 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wex 1424  wcel 1436  wrex 2356   class class class wbr 3820  cfv 4981  cle 7467  cz 8683  cuz 8951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-cnex 7380  ax-resscn 7381
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-fv 4989  df-ov 5616  df-neg 7600  df-z 8684  df-uz 8952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator