| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
 | 
| Ref | Expression | 
|---|---|
| iccf1o.1 | 
 | 
| Ref | Expression | 
|---|---|
| iccf1o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iccf1o.1 | 
. 2
 | |
| 2 | 0re 8026 | 
. . . . . . . . 9
 | |
| 3 | 1re 8025 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | elicc2i 10014 | 
. . . . . . . 8
 | 
| 5 | 4 | simp1bi 1014 | 
. . . . . . 7
 | 
| 6 | 5 | adantl 277 | 
. . . . . 6
 | 
| 7 | 6 | recnd 8055 | 
. . . . 5
 | 
| 8 | simpl2 1003 | 
. . . . . 6
 | |
| 9 | 8 | recnd 8055 | 
. . . . 5
 | 
| 10 | 7, 9 | mulcld 8047 | 
. . . 4
 | 
| 11 | ax-1cn 7972 | 
. . . . . 6
 | |
| 12 | subcl 8225 | 
. . . . . 6
 | |
| 13 | 11, 7, 12 | sylancr 414 | 
. . . . 5
 | 
| 14 | simpl1 1002 | 
. . . . . 6
 | |
| 15 | 14 | recnd 8055 | 
. . . . 5
 | 
| 16 | 13, 15 | mulcld 8047 | 
. . . 4
 | 
| 17 | 10, 16 | addcomd 8177 | 
. . 3
 | 
| 18 | lincmb01cmp 10078 | 
. . 3
 | |
| 19 | 17, 18 | eqeltrd 2273 | 
. 2
 | 
| 20 | simpr 110 | 
. . . . 5
 | |
| 21 | simpl1 1002 | 
. . . . . 6
 | |
| 22 | simpl2 1003 | 
. . . . . 6
 | |
| 23 | elicc2 10013 | 
. . . . . . . . 9
 | |
| 24 | 23 | 3adant3 1019 | 
. . . . . . . 8
 | 
| 25 | 24 | biimpa 296 | 
. . . . . . 7
 | 
| 26 | 25 | simp1d 1011 | 
. . . . . 6
 | 
| 27 | eqid 2196 | 
. . . . . . 7
 | |
| 28 | eqid 2196 | 
. . . . . . 7
 | |
| 29 | 27, 28 | iccshftl 10071 | 
. . . . . 6
 | 
| 30 | 21, 22, 26, 21, 29 | syl22anc 1250 | 
. . . . 5
 | 
| 31 | 20, 30 | mpbid 147 | 
. . . 4
 | 
| 32 | 26, 21 | resubcld 8407 | 
. . . . . 6
 | 
| 33 | 32 | recnd 8055 | 
. . . . 5
 | 
| 34 | difrp 9767 | 
. . . . . . . 8
 | |
| 35 | 34 | biimp3a 1356 | 
. . . . . . 7
 | 
| 36 | 35 | adantr 276 | 
. . . . . 6
 | 
| 37 | 36 | rpcnd 9773 | 
. . . . 5
 | 
| 38 | rpap0 9745 | 
. . . . . 6
 | |
| 39 | 36, 38 | syl 14 | 
. . . . 5
 | 
| 40 | 33, 37, 39 | divcanap1d 8818 | 
. . . 4
 | 
| 41 | 37 | mul02d 8418 | 
. . . . . 6
 | 
| 42 | 21 | recnd 8055 | 
. . . . . . 7
 | 
| 43 | 42 | subidd 8325 | 
. . . . . 6
 | 
| 44 | 41, 43 | eqtr4d 2232 | 
. . . . 5
 | 
| 45 | 37 | mulid2d 8045 | 
. . . . 5
 | 
| 46 | 44, 45 | oveq12d 5940 | 
. . . 4
 | 
| 47 | 31, 40, 46 | 3eltr4d 2280 | 
. . 3
 | 
| 48 | 0red 8027 | 
. . . 4
 | |
| 49 | 1red 8041 | 
. . . 4
 | |
| 50 | 32, 36 | rerpdivcld 9803 | 
. . . 4
 | 
| 51 | eqid 2196 | 
. . . . 5
 | |
| 52 | eqid 2196 | 
. . . . 5
 | |
| 53 | 51, 52 | iccdil 10073 | 
. . . 4
 | 
| 54 | 48, 49, 50, 36, 53 | syl22anc 1250 | 
. . 3
 | 
| 55 | 47, 54 | mpbird 167 | 
. 2
 | 
| 56 | eqcom 2198 | 
. . . 4
 | |
| 57 | 33 | adantrl 478 | 
. . . . 5
 | 
| 58 | 7 | adantrr 479 | 
. . . . 5
 | 
| 59 | 37 | adantrl 478 | 
. . . . 5
 | 
| 60 | 39 | adantrl 478 | 
. . . . 5
 | 
| 61 | 57, 58, 59, 60 | divmulap3d 8852 | 
. . . 4
 | 
| 62 | 56, 61 | bitrid 192 | 
. . 3
 | 
| 63 | 26 | adantrl 478 | 
. . . . . 6
 | 
| 64 | 63 | recnd 8055 | 
. . . . 5
 | 
| 65 | 42 | adantrl 478 | 
. . . . 5
 | 
| 66 | 8, 14 | resubcld 8407 | 
. . . . . . . 8
 | 
| 67 | 6, 66 | remulcld 8057 | 
. . . . . . 7
 | 
| 68 | 67 | adantrr 479 | 
. . . . . 6
 | 
| 69 | 68 | recnd 8055 | 
. . . . 5
 | 
| 70 | 64, 65, 69 | subadd2d 8356 | 
. . . 4
 | 
| 71 | eqcom 2198 | 
. . . 4
 | |
| 72 | 70, 71 | bitrdi 196 | 
. . 3
 | 
| 73 | 7, 15 | mulcld 8047 | 
. . . . . . 7
 | 
| 74 | 10, 73, 15 | subadd23d 8359 | 
. . . . . 6
 | 
| 75 | 7, 9, 15 | subdid 8440 | 
. . . . . . 7
 | 
| 76 | 75 | oveq1d 5937 | 
. . . . . 6
 | 
| 77 | 1cnd 8042 | 
. . . . . . . . 9
 | |
| 78 | 77, 7, 15 | subdird 8441 | 
. . . . . . . 8
 | 
| 79 | 15 | mulid2d 8045 | 
. . . . . . . . 9
 | 
| 80 | 79 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 81 | 78, 80 | eqtrd 2229 | 
. . . . . . 7
 | 
| 82 | 81 | oveq2d 5938 | 
. . . . . 6
 | 
| 83 | 74, 76, 82 | 3eqtr4d 2239 | 
. . . . 5
 | 
| 84 | 83 | adantrr 479 | 
. . . 4
 | 
| 85 | 84 | eqeq2d 2208 | 
. . 3
 | 
| 86 | 62, 72, 85 | 3bitrd 214 | 
. 2
 | 
| 87 | 1, 19, 55, 86 | f1ocnv2d 6127 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-rp 9729 df-icc 9970 | 
| This theorem is referenced by: iccen 10081 | 
| Copyright terms: Public domain | W3C validator |