| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
|
| Ref | Expression |
|---|---|
| iccf1o.1 |
|
| Ref | Expression |
|---|---|
| iccf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 |
. 2
| |
| 2 | 0re 8043 |
. . . . . . . . 9
| |
| 3 | 1re 8042 |
. . . . . . . . 9
| |
| 4 | 2, 3 | elicc2i 10031 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1014 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 6 | recnd 8072 |
. . . . 5
|
| 8 | simpl2 1003 |
. . . . . 6
| |
| 9 | 8 | recnd 8072 |
. . . . 5
|
| 10 | 7, 9 | mulcld 8064 |
. . . 4
|
| 11 | ax-1cn 7989 |
. . . . . 6
| |
| 12 | subcl 8242 |
. . . . . 6
| |
| 13 | 11, 7, 12 | sylancr 414 |
. . . . 5
|
| 14 | simpl1 1002 |
. . . . . 6
| |
| 15 | 14 | recnd 8072 |
. . . . 5
|
| 16 | 13, 15 | mulcld 8064 |
. . . 4
|
| 17 | 10, 16 | addcomd 8194 |
. . 3
|
| 18 | lincmb01cmp 10095 |
. . 3
| |
| 19 | 17, 18 | eqeltrd 2273 |
. 2
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | simpl1 1002 |
. . . . . 6
| |
| 22 | simpl2 1003 |
. . . . . 6
| |
| 23 | elicc2 10030 |
. . . . . . . . 9
| |
| 24 | 23 | 3adant3 1019 |
. . . . . . . 8
|
| 25 | 24 | biimpa 296 |
. . . . . . 7
|
| 26 | 25 | simp1d 1011 |
. . . . . 6
|
| 27 | eqid 2196 |
. . . . . . 7
| |
| 28 | eqid 2196 |
. . . . . . 7
| |
| 29 | 27, 28 | iccshftl 10088 |
. . . . . 6
|
| 30 | 21, 22, 26, 21, 29 | syl22anc 1250 |
. . . . 5
|
| 31 | 20, 30 | mpbid 147 |
. . . 4
|
| 32 | 26, 21 | resubcld 8424 |
. . . . . 6
|
| 33 | 32 | recnd 8072 |
. . . . 5
|
| 34 | difrp 9784 |
. . . . . . . 8
| |
| 35 | 34 | biimp3a 1356 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 36 | rpcnd 9790 |
. . . . 5
|
| 38 | rpap0 9762 |
. . . . . 6
| |
| 39 | 36, 38 | syl 14 |
. . . . 5
|
| 40 | 33, 37, 39 | divcanap1d 8835 |
. . . 4
|
| 41 | 37 | mul02d 8435 |
. . . . . 6
|
| 42 | 21 | recnd 8072 |
. . . . . . 7
|
| 43 | 42 | subidd 8342 |
. . . . . 6
|
| 44 | 41, 43 | eqtr4d 2232 |
. . . . 5
|
| 45 | 37 | mulid2d 8062 |
. . . . 5
|
| 46 | 44, 45 | oveq12d 5943 |
. . . 4
|
| 47 | 31, 40, 46 | 3eltr4d 2280 |
. . 3
|
| 48 | 0red 8044 |
. . . 4
| |
| 49 | 1red 8058 |
. . . 4
| |
| 50 | 32, 36 | rerpdivcld 9820 |
. . . 4
|
| 51 | eqid 2196 |
. . . . 5
| |
| 52 | eqid 2196 |
. . . . 5
| |
| 53 | 51, 52 | iccdil 10090 |
. . . 4
|
| 54 | 48, 49, 50, 36, 53 | syl22anc 1250 |
. . 3
|
| 55 | 47, 54 | mpbird 167 |
. 2
|
| 56 | eqcom 2198 |
. . . 4
| |
| 57 | 33 | adantrl 478 |
. . . . 5
|
| 58 | 7 | adantrr 479 |
. . . . 5
|
| 59 | 37 | adantrl 478 |
. . . . 5
|
| 60 | 39 | adantrl 478 |
. . . . 5
|
| 61 | 57, 58, 59, 60 | divmulap3d 8869 |
. . . 4
|
| 62 | 56, 61 | bitrid 192 |
. . 3
|
| 63 | 26 | adantrl 478 |
. . . . . 6
|
| 64 | 63 | recnd 8072 |
. . . . 5
|
| 65 | 42 | adantrl 478 |
. . . . 5
|
| 66 | 8, 14 | resubcld 8424 |
. . . . . . . 8
|
| 67 | 6, 66 | remulcld 8074 |
. . . . . . 7
|
| 68 | 67 | adantrr 479 |
. . . . . 6
|
| 69 | 68 | recnd 8072 |
. . . . 5
|
| 70 | 64, 65, 69 | subadd2d 8373 |
. . . 4
|
| 71 | eqcom 2198 |
. . . 4
| |
| 72 | 70, 71 | bitrdi 196 |
. . 3
|
| 73 | 7, 15 | mulcld 8064 |
. . . . . . 7
|
| 74 | 10, 73, 15 | subadd23d 8376 |
. . . . . 6
|
| 75 | 7, 9, 15 | subdid 8457 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5940 |
. . . . . 6
|
| 77 | 1cnd 8059 |
. . . . . . . . 9
| |
| 78 | 77, 7, 15 | subdird 8458 |
. . . . . . . 8
|
| 79 | 15 | mulid2d 8062 |
. . . . . . . . 9
|
| 80 | 79 | oveq1d 5940 |
. . . . . . . 8
|
| 81 | 78, 80 | eqtrd 2229 |
. . . . . . 7
|
| 82 | 81 | oveq2d 5941 |
. . . . . 6
|
| 83 | 74, 76, 82 | 3eqtr4d 2239 |
. . . . 5
|
| 84 | 83 | adantrr 479 |
. . . 4
|
| 85 | 84 | eqeq2d 2208 |
. . 3
|
| 86 | 62, 72, 85 | 3bitrd 214 |
. 2
|
| 87 | 1, 19, 55, 86 | f1ocnv2d 6131 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-rp 9746 df-icc 9987 |
| This theorem is referenced by: iccen 10098 |
| Copyright terms: Public domain | W3C validator |