| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
|
| Ref | Expression |
|---|---|
| iccf1o.1 |
|
| Ref | Expression |
|---|---|
| iccf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 |
. 2
| |
| 2 | 0re 8107 |
. . . . . . . . 9
| |
| 3 | 1re 8106 |
. . . . . . . . 9
| |
| 4 | 2, 3 | elicc2i 10096 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1015 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 6 | recnd 8136 |
. . . . 5
|
| 8 | simpl2 1004 |
. . . . . 6
| |
| 9 | 8 | recnd 8136 |
. . . . 5
|
| 10 | 7, 9 | mulcld 8128 |
. . . 4
|
| 11 | ax-1cn 8053 |
. . . . . 6
| |
| 12 | subcl 8306 |
. . . . . 6
| |
| 13 | 11, 7, 12 | sylancr 414 |
. . . . 5
|
| 14 | simpl1 1003 |
. . . . . 6
| |
| 15 | 14 | recnd 8136 |
. . . . 5
|
| 16 | 13, 15 | mulcld 8128 |
. . . 4
|
| 17 | 10, 16 | addcomd 8258 |
. . 3
|
| 18 | lincmb01cmp 10160 |
. . 3
| |
| 19 | 17, 18 | eqeltrd 2284 |
. 2
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | simpl1 1003 |
. . . . . 6
| |
| 22 | simpl2 1004 |
. . . . . 6
| |
| 23 | elicc2 10095 |
. . . . . . . . 9
| |
| 24 | 23 | 3adant3 1020 |
. . . . . . . 8
|
| 25 | 24 | biimpa 296 |
. . . . . . 7
|
| 26 | 25 | simp1d 1012 |
. . . . . 6
|
| 27 | eqid 2207 |
. . . . . . 7
| |
| 28 | eqid 2207 |
. . . . . . 7
| |
| 29 | 27, 28 | iccshftl 10153 |
. . . . . 6
|
| 30 | 21, 22, 26, 21, 29 | syl22anc 1251 |
. . . . 5
|
| 31 | 20, 30 | mpbid 147 |
. . . 4
|
| 32 | 26, 21 | resubcld 8488 |
. . . . . 6
|
| 33 | 32 | recnd 8136 |
. . . . 5
|
| 34 | difrp 9849 |
. . . . . . . 8
| |
| 35 | 34 | biimp3a 1358 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 36 | rpcnd 9855 |
. . . . 5
|
| 38 | rpap0 9827 |
. . . . . 6
| |
| 39 | 36, 38 | syl 14 |
. . . . 5
|
| 40 | 33, 37, 39 | divcanap1d 8899 |
. . . 4
|
| 41 | 37 | mul02d 8499 |
. . . . . 6
|
| 42 | 21 | recnd 8136 |
. . . . . . 7
|
| 43 | 42 | subidd 8406 |
. . . . . 6
|
| 44 | 41, 43 | eqtr4d 2243 |
. . . . 5
|
| 45 | 37 | mulid2d 8126 |
. . . . 5
|
| 46 | 44, 45 | oveq12d 5985 |
. . . 4
|
| 47 | 31, 40, 46 | 3eltr4d 2291 |
. . 3
|
| 48 | 0red 8108 |
. . . 4
| |
| 49 | 1red 8122 |
. . . 4
| |
| 50 | 32, 36 | rerpdivcld 9885 |
. . . 4
|
| 51 | eqid 2207 |
. . . . 5
| |
| 52 | eqid 2207 |
. . . . 5
| |
| 53 | 51, 52 | iccdil 10155 |
. . . 4
|
| 54 | 48, 49, 50, 36, 53 | syl22anc 1251 |
. . 3
|
| 55 | 47, 54 | mpbird 167 |
. 2
|
| 56 | eqcom 2209 |
. . . 4
| |
| 57 | 33 | adantrl 478 |
. . . . 5
|
| 58 | 7 | adantrr 479 |
. . . . 5
|
| 59 | 37 | adantrl 478 |
. . . . 5
|
| 60 | 39 | adantrl 478 |
. . . . 5
|
| 61 | 57, 58, 59, 60 | divmulap3d 8933 |
. . . 4
|
| 62 | 56, 61 | bitrid 192 |
. . 3
|
| 63 | 26 | adantrl 478 |
. . . . . 6
|
| 64 | 63 | recnd 8136 |
. . . . 5
|
| 65 | 42 | adantrl 478 |
. . . . 5
|
| 66 | 8, 14 | resubcld 8488 |
. . . . . . . 8
|
| 67 | 6, 66 | remulcld 8138 |
. . . . . . 7
|
| 68 | 67 | adantrr 479 |
. . . . . 6
|
| 69 | 68 | recnd 8136 |
. . . . 5
|
| 70 | 64, 65, 69 | subadd2d 8437 |
. . . 4
|
| 71 | eqcom 2209 |
. . . 4
| |
| 72 | 70, 71 | bitrdi 196 |
. . 3
|
| 73 | 7, 15 | mulcld 8128 |
. . . . . . 7
|
| 74 | 10, 73, 15 | subadd23d 8440 |
. . . . . 6
|
| 75 | 7, 9, 15 | subdid 8521 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5982 |
. . . . . 6
|
| 77 | 1cnd 8123 |
. . . . . . . . 9
| |
| 78 | 77, 7, 15 | subdird 8522 |
. . . . . . . 8
|
| 79 | 15 | mulid2d 8126 |
. . . . . . . . 9
|
| 80 | 79 | oveq1d 5982 |
. . . . . . . 8
|
| 81 | 78, 80 | eqtrd 2240 |
. . . . . . 7
|
| 82 | 81 | oveq2d 5983 |
. . . . . 6
|
| 83 | 74, 76, 82 | 3eqtr4d 2250 |
. . . . 5
|
| 84 | 83 | adantrr 479 |
. . . 4
|
| 85 | 84 | eqeq2d 2219 |
. . 3
|
| 86 | 62, 72, 85 | 3bitrd 214 |
. 2
|
| 87 | 1, 19, 55, 86 | f1ocnv2d 6173 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-rp 9811 df-icc 10052 |
| This theorem is referenced by: iccen 10163 |
| Copyright terms: Public domain | W3C validator |