Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version |
Description: Describe a bijection from to an arbitrary nontrivial closed interval . (Contributed by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
iccf1o.1 |
Ref | Expression |
---|---|
iccf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccf1o.1 | . 2 | |
2 | 0re 7891 | . . . . . . . . 9 | |
3 | 1re 7890 | . . . . . . . . 9 | |
4 | 2, 3 | elicc2i 9867 | . . . . . . . 8 |
5 | 4 | simp1bi 1001 | . . . . . . 7 |
6 | 5 | adantl 275 | . . . . . 6 |
7 | 6 | recnd 7919 | . . . . 5 |
8 | simpl2 990 | . . . . . 6 | |
9 | 8 | recnd 7919 | . . . . 5 |
10 | 7, 9 | mulcld 7911 | . . . 4 |
11 | ax-1cn 7838 | . . . . . 6 | |
12 | subcl 8089 | . . . . . 6 | |
13 | 11, 7, 12 | sylancr 411 | . . . . 5 |
14 | simpl1 989 | . . . . . 6 | |
15 | 14 | recnd 7919 | . . . . 5 |
16 | 13, 15 | mulcld 7911 | . . . 4 |
17 | 10, 16 | addcomd 8041 | . . 3 |
18 | lincmb01cmp 9931 | . . 3 | |
19 | 17, 18 | eqeltrd 2241 | . 2 |
20 | simpr 109 | . . . . 5 | |
21 | simpl1 989 | . . . . . 6 | |
22 | simpl2 990 | . . . . . 6 | |
23 | elicc2 9866 | . . . . . . . . 9 | |
24 | 23 | 3adant3 1006 | . . . . . . . 8 |
25 | 24 | biimpa 294 | . . . . . . 7 |
26 | 25 | simp1d 998 | . . . . . 6 |
27 | eqid 2164 | . . . . . . 7 | |
28 | eqid 2164 | . . . . . . 7 | |
29 | 27, 28 | iccshftl 9924 | . . . . . 6 |
30 | 21, 22, 26, 21, 29 | syl22anc 1228 | . . . . 5 |
31 | 20, 30 | mpbid 146 | . . . 4 |
32 | 26, 21 | resubcld 8271 | . . . . . 6 |
33 | 32 | recnd 7919 | . . . . 5 |
34 | difrp 9620 | . . . . . . . 8 | |
35 | 34 | biimp3a 1334 | . . . . . . 7 |
36 | 35 | adantr 274 | . . . . . 6 |
37 | 36 | rpcnd 9626 | . . . . 5 |
38 | rpap0 9598 | . . . . . 6 # | |
39 | 36, 38 | syl 14 | . . . . 5 # |
40 | 33, 37, 39 | divcanap1d 8679 | . . . 4 |
41 | 37 | mul02d 8282 | . . . . . 6 |
42 | 21 | recnd 7919 | . . . . . . 7 |
43 | 42 | subidd 8189 | . . . . . 6 |
44 | 41, 43 | eqtr4d 2200 | . . . . 5 |
45 | 37 | mulid2d 7909 | . . . . 5 |
46 | 44, 45 | oveq12d 5855 | . . . 4 |
47 | 31, 40, 46 | 3eltr4d 2248 | . . 3 |
48 | 0red 7892 | . . . 4 | |
49 | 1red 7906 | . . . 4 | |
50 | 32, 36 | rerpdivcld 9656 | . . . 4 |
51 | eqid 2164 | . . . . 5 | |
52 | eqid 2164 | . . . . 5 | |
53 | 51, 52 | iccdil 9926 | . . . 4 |
54 | 48, 49, 50, 36, 53 | syl22anc 1228 | . . 3 |
55 | 47, 54 | mpbird 166 | . 2 |
56 | eqcom 2166 | . . . 4 | |
57 | 33 | adantrl 470 | . . . . 5 |
58 | 7 | adantrr 471 | . . . . 5 |
59 | 37 | adantrl 470 | . . . . 5 |
60 | 39 | adantrl 470 | . . . . 5 # |
61 | 57, 58, 59, 60 | divmulap3d 8713 | . . . 4 |
62 | 56, 61 | syl5bb 191 | . . 3 |
63 | 26 | adantrl 470 | . . . . . 6 |
64 | 63 | recnd 7919 | . . . . 5 |
65 | 42 | adantrl 470 | . . . . 5 |
66 | 8, 14 | resubcld 8271 | . . . . . . . 8 |
67 | 6, 66 | remulcld 7921 | . . . . . . 7 |
68 | 67 | adantrr 471 | . . . . . 6 |
69 | 68 | recnd 7919 | . . . . 5 |
70 | 64, 65, 69 | subadd2d 8220 | . . . 4 |
71 | eqcom 2166 | . . . 4 | |
72 | 70, 71 | bitrdi 195 | . . 3 |
73 | 7, 15 | mulcld 7911 | . . . . . . 7 |
74 | 10, 73, 15 | subadd23d 8223 | . . . . . 6 |
75 | 7, 9, 15 | subdid 8304 | . . . . . . 7 |
76 | 75 | oveq1d 5852 | . . . . . 6 |
77 | 1cnd 7907 | . . . . . . . . 9 | |
78 | 77, 7, 15 | subdird 8305 | . . . . . . . 8 |
79 | 15 | mulid2d 7909 | . . . . . . . . 9 |
80 | 79 | oveq1d 5852 | . . . . . . . 8 |
81 | 78, 80 | eqtrd 2197 | . . . . . . 7 |
82 | 81 | oveq2d 5853 | . . . . . 6 |
83 | 74, 76, 82 | 3eqtr4d 2207 | . . . . 5 |
84 | 83 | adantrr 471 | . . . 4 |
85 | 84 | eqeq2d 2176 | . . 3 |
86 | 62, 72, 85 | 3bitrd 213 | . 2 |
87 | 1, 19, 55, 86 | f1ocnv2d 6037 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 967 wceq 1342 wcel 2135 class class class wbr 3977 cmpt 4038 ccnv 4598 wf1o 5182 (class class class)co 5837 cc 7743 cr 7744 cc0 7745 c1 7746 caddc 7748 cmul 7750 clt 7925 cle 7926 cmin 8061 # cap 8471 cdiv 8560 crp 9581 cicc 9819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-rp 9582 df-icc 9823 |
This theorem is referenced by: iccen 9934 |
Copyright terms: Public domain | W3C validator |