| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
|
| Ref | Expression |
|---|---|
| iccf1o.1 |
|
| Ref | Expression |
|---|---|
| iccf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 |
. 2
| |
| 2 | 0re 8146 |
. . . . . . . . 9
| |
| 3 | 1re 8145 |
. . . . . . . . 9
| |
| 4 | 2, 3 | elicc2i 10135 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1036 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 6 | recnd 8175 |
. . . . 5
|
| 8 | simpl2 1025 |
. . . . . 6
| |
| 9 | 8 | recnd 8175 |
. . . . 5
|
| 10 | 7, 9 | mulcld 8167 |
. . . 4
|
| 11 | ax-1cn 8092 |
. . . . . 6
| |
| 12 | subcl 8345 |
. . . . . 6
| |
| 13 | 11, 7, 12 | sylancr 414 |
. . . . 5
|
| 14 | simpl1 1024 |
. . . . . 6
| |
| 15 | 14 | recnd 8175 |
. . . . 5
|
| 16 | 13, 15 | mulcld 8167 |
. . . 4
|
| 17 | 10, 16 | addcomd 8297 |
. . 3
|
| 18 | lincmb01cmp 10199 |
. . 3
| |
| 19 | 17, 18 | eqeltrd 2306 |
. 2
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | simpl1 1024 |
. . . . . 6
| |
| 22 | simpl2 1025 |
. . . . . 6
| |
| 23 | elicc2 10134 |
. . . . . . . . 9
| |
| 24 | 23 | 3adant3 1041 |
. . . . . . . 8
|
| 25 | 24 | biimpa 296 |
. . . . . . 7
|
| 26 | 25 | simp1d 1033 |
. . . . . 6
|
| 27 | eqid 2229 |
. . . . . . 7
| |
| 28 | eqid 2229 |
. . . . . . 7
| |
| 29 | 27, 28 | iccshftl 10192 |
. . . . . 6
|
| 30 | 21, 22, 26, 21, 29 | syl22anc 1272 |
. . . . 5
|
| 31 | 20, 30 | mpbid 147 |
. . . 4
|
| 32 | 26, 21 | resubcld 8527 |
. . . . . 6
|
| 33 | 32 | recnd 8175 |
. . . . 5
|
| 34 | difrp 9888 |
. . . . . . . 8
| |
| 35 | 34 | biimp3a 1379 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 36 | rpcnd 9894 |
. . . . 5
|
| 38 | rpap0 9866 |
. . . . . 6
| |
| 39 | 36, 38 | syl 14 |
. . . . 5
|
| 40 | 33, 37, 39 | divcanap1d 8938 |
. . . 4
|
| 41 | 37 | mul02d 8538 |
. . . . . 6
|
| 42 | 21 | recnd 8175 |
. . . . . . 7
|
| 43 | 42 | subidd 8445 |
. . . . . 6
|
| 44 | 41, 43 | eqtr4d 2265 |
. . . . 5
|
| 45 | 37 | mulid2d 8165 |
. . . . 5
|
| 46 | 44, 45 | oveq12d 6019 |
. . . 4
|
| 47 | 31, 40, 46 | 3eltr4d 2313 |
. . 3
|
| 48 | 0red 8147 |
. . . 4
| |
| 49 | 1red 8161 |
. . . 4
| |
| 50 | 32, 36 | rerpdivcld 9924 |
. . . 4
|
| 51 | eqid 2229 |
. . . . 5
| |
| 52 | eqid 2229 |
. . . . 5
| |
| 53 | 51, 52 | iccdil 10194 |
. . . 4
|
| 54 | 48, 49, 50, 36, 53 | syl22anc 1272 |
. . 3
|
| 55 | 47, 54 | mpbird 167 |
. 2
|
| 56 | eqcom 2231 |
. . . 4
| |
| 57 | 33 | adantrl 478 |
. . . . 5
|
| 58 | 7 | adantrr 479 |
. . . . 5
|
| 59 | 37 | adantrl 478 |
. . . . 5
|
| 60 | 39 | adantrl 478 |
. . . . 5
|
| 61 | 57, 58, 59, 60 | divmulap3d 8972 |
. . . 4
|
| 62 | 56, 61 | bitrid 192 |
. . 3
|
| 63 | 26 | adantrl 478 |
. . . . . 6
|
| 64 | 63 | recnd 8175 |
. . . . 5
|
| 65 | 42 | adantrl 478 |
. . . . 5
|
| 66 | 8, 14 | resubcld 8527 |
. . . . . . . 8
|
| 67 | 6, 66 | remulcld 8177 |
. . . . . . 7
|
| 68 | 67 | adantrr 479 |
. . . . . 6
|
| 69 | 68 | recnd 8175 |
. . . . 5
|
| 70 | 64, 65, 69 | subadd2d 8476 |
. . . 4
|
| 71 | eqcom 2231 |
. . . 4
| |
| 72 | 70, 71 | bitrdi 196 |
. . 3
|
| 73 | 7, 15 | mulcld 8167 |
. . . . . . 7
|
| 74 | 10, 73, 15 | subadd23d 8479 |
. . . . . 6
|
| 75 | 7, 9, 15 | subdid 8560 |
. . . . . . 7
|
| 76 | 75 | oveq1d 6016 |
. . . . . 6
|
| 77 | 1cnd 8162 |
. . . . . . . . 9
| |
| 78 | 77, 7, 15 | subdird 8561 |
. . . . . . . 8
|
| 79 | 15 | mulid2d 8165 |
. . . . . . . . 9
|
| 80 | 79 | oveq1d 6016 |
. . . . . . . 8
|
| 81 | 78, 80 | eqtrd 2262 |
. . . . . . 7
|
| 82 | 81 | oveq2d 6017 |
. . . . . 6
|
| 83 | 74, 76, 82 | 3eqtr4d 2272 |
. . . . 5
|
| 84 | 83 | adantrr 479 |
. . . 4
|
| 85 | 84 | eqeq2d 2241 |
. . 3
|
| 86 | 62, 72, 85 | 3bitrd 214 |
. 2
|
| 87 | 1, 19, 55, 86 | f1ocnv2d 6210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-rp 9850 df-icc 10091 |
| This theorem is referenced by: iccen 10202 |
| Copyright terms: Public domain | W3C validator |