ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o Unicode version

Theorem iccf1o 10006
Description: Describe a bijection from  [ 0 ,  1 ] to an arbitrary nontrivial closed interval  [ A ,  B ]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
Assertion
Ref Expression
iccf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
2 0re 7959 . . . . . . . . 9  |-  0  e.  RR
3 1re 7958 . . . . . . . . 9  |-  1  e.  RR
42, 3elicc2i 9941 . . . . . . . 8  |-  ( x  e.  ( 0 [,] 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  1
) )
54simp1bi 1012 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 )  ->  x  e.  RR )
65adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  x  e.  RR )
76recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
8 simpl2 1001 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  B  e.  RR )
98recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  B  e.  CC )
107, 9mulcld 7980 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  B )  e.  CC )
11 ax-1cn 7906 . . . . . 6  |-  1  e.  CC
12 subcl 8158 . . . . . 6  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  -  x
)  e.  CC )
1311, 7, 12sylancr 414 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( 1  -  x )  e.  CC )
14 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  A  e.  RR )
1514recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  A  e.  CC )
1613, 15mulcld 7980 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  e.  CC )
1710, 16addcomd 8110 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  =  ( ( ( 1  -  x )  x.  A
)  +  ( x  x.  B ) ) )
18 lincmb01cmp 10005 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  x )  x.  A )  +  ( x  x.  B
) )  e.  ( A [,] B ) )
1917, 18eqeltrd 2254 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  e.  ( A [,] B ) )
20 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
y  e.  ( A [,] B ) )
21 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  A  e.  RR )
22 simpl2 1001 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  B  e.  RR )
23 elicc2 9940 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
24233adant3 1017 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  <->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
2524biimpa 296 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
2625simp1d 1009 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
y  e.  RR )
27 eqid 2177 . . . . . . 7  |-  ( A  -  A )  =  ( A  -  A
)
28 eqid 2177 . . . . . . 7  |-  ( B  -  A )  =  ( B  -  A
)
2927, 28iccshftl 9998 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  RR  /\  A  e.  RR ) )  -> 
( y  e.  ( A [,] B )  <-> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) ) )
3021, 22, 26, 21, 29syl22anc 1239 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  e.  ( A [,] B )  <-> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) ) )
3120, 30mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  ( ( A  -  A ) [,] ( B  -  A ) ) )
3226, 21resubcld 8340 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  RR )
3332recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( y  -  A
)  e.  CC )
34 difrp 9694 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
3534biimp3a 1345 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
3635adantr 276 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
)  e.  RR+ )
3736rpcnd 9700 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
)  e.  CC )
38 rpap0 9672 . . . . . 6  |-  ( ( B  -  A )  e.  RR+  ->  ( B  -  A ) #  0 )
3936, 38syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( B  -  A
) #  0 )
4033, 37, 39divcanap1d 8750 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  =  ( y  -  A ) )
4137mul02d 8351 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 0  x.  ( B  -  A )
)  =  0 )
4221recnd 7988 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  ->  A  e.  CC )
4342subidd 8258 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( A  -  A
)  =  0 )
4441, 43eqtr4d 2213 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 0  x.  ( B  -  A )
)  =  ( A  -  A ) )
4537mulid2d 7978 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( 1  x.  ( B  -  A )
)  =  ( B  -  A ) )
4644, 45oveq12d 5895 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( 0  x.  ( B  -  A
) ) [,] (
1  x.  ( B  -  A ) ) )  =  ( ( A  -  A ) [,] ( B  -  A ) ) )
4731, 40, 463eltr4d 2261 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  e.  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A
) ) ) )
48 0red 7960 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
0  e.  RR )
49 1red 7974 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
1  e.  RR )
5032, 36rerpdivcld 9730 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( y  -  A )  /  ( B  -  A )
)  e.  RR )
51 eqid 2177 . . . . 5  |-  ( 0  x.  ( B  -  A ) )  =  ( 0  x.  ( B  -  A )
)
52 eqid 2177 . . . . 5  |-  ( 1  x.  ( B  -  A ) )  =  ( 1  x.  ( B  -  A )
)
5351, 52iccdil 10000 . . . 4  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( ( ( y  -  A )  /  ( B  -  A ) )  e.  RR  /\  ( B  -  A )  e.  RR+ ) )  ->  (
( ( y  -  A )  /  ( B  -  A )
)  e.  ( 0 [,] 1 )  <->  ( (
( y  -  A
)  /  ( B  -  A ) )  x.  ( B  -  A ) )  e.  ( ( 0  x.  ( B  -  A
) ) [,] (
1  x.  ( B  -  A ) ) ) ) )
5448, 49, 50, 36, 53syl22anc 1239 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( ( y  -  A )  / 
( B  -  A
) )  e.  ( 0 [,] 1 )  <-> 
( ( ( y  -  A )  / 
( B  -  A
) )  x.  ( B  -  A )
)  e.  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A
) ) ) ) )
5547, 54mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  y  e.  ( A [,] B ) )  -> 
( ( y  -  A )  /  ( B  -  A )
)  e.  ( 0 [,] 1 ) )
56 eqcom 2179 . . . 4  |-  ( x  =  ( ( y  -  A )  / 
( B  -  A
) )  <->  ( (
y  -  A )  /  ( B  -  A ) )  =  x )
5733adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
y  -  A )  e.  CC )
587adantrr 479 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  x  e.  CC )
5937adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  ( B  -  A )  e.  CC )
6039adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  ( B  -  A ) #  0 )
6157, 58, 59, 60divmulap3d 8784 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( ( y  -  A )  /  ( B  -  A )
)  =  x  <->  ( y  -  A )  =  ( x  x.  ( B  -  A ) ) ) )
6256, 61bitrid 192 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  =  ( ( y  -  A )  /  ( B  -  A ) )  <->  ( y  -  A )  =  ( x  x.  ( B  -  A ) ) ) )
6326adantrl 478 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  y  e.  RR )
6463recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  y  e.  CC )
6542adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  A  e.  CC )
668, 14resubcld 8340 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR )
676, 66remulcld 7990 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  ( B  -  A
) )  e.  RR )
6867adantrr 479 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  x.  ( B  -  A ) )  e.  RR )
6968recnd 7988 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  x.  ( B  -  A ) )  e.  CC )
7064, 65, 69subadd2d 8289 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( y  -  A
)  =  ( x  x.  ( B  -  A ) )  <->  ( (
x  x.  ( B  -  A ) )  +  A )  =  y ) )
71 eqcom 2179 . . . 4  |-  ( ( ( x  x.  ( B  -  A )
)  +  A )  =  y  <->  y  =  ( ( x  x.  ( B  -  A
) )  +  A
) )
7270, 71bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( y  -  A
)  =  ( x  x.  ( B  -  A ) )  <->  y  =  ( ( x  x.  ( B  -  A
) )  +  A
) ) )
737, 15mulcld 7980 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  A )  e.  CC )
7410, 73, 15subadd23d 8292 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( ( x  x.  B )  -  ( x  x.  A ) )  +  A )  =  ( ( x  x.  B
)  +  ( A  -  ( x  x.  A ) ) ) )
757, 9, 15subdid 8373 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( x  x.  ( B  -  A
) )  =  ( ( x  x.  B
)  -  ( x  x.  A ) ) )
7675oveq1d 5892 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  ( B  -  A ) )  +  A )  =  ( ( ( x  x.  B )  -  (
x  x.  A ) )  +  A ) )
77 1cnd 7975 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  1  e.  CC )
7877, 7, 15subdird 8374 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  =  ( ( 1  x.  A
)  -  ( x  x.  A ) ) )
7915mulid2d 7978 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  A )  =  A )
8079oveq1d 5892 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  x.  A )  -  ( x  x.  A
) )  =  ( A  -  ( x  x.  A ) ) )
8178, 80eqtrd 2210 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  x )  x.  A )  =  ( A  -  ( x  x.  A ) ) )
8281oveq2d 5893 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) )  =  ( ( x  x.  B
)  +  ( A  -  ( x  x.  A ) ) ) )
8374, 76, 823eqtr4d 2220 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  x  e.  ( 0 [,] 1 ) )  ->  ( ( x  x.  ( B  -  A ) )  +  A )  =  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) )
8483adantrr 479 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
( x  x.  ( B  -  A )
)  +  A )  =  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) ) )
8584eqeq2d 2189 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
y  =  ( ( x  x.  ( B  -  A ) )  +  A )  <->  y  =  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) )
8662, 72, 853bitrd 214 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( x  e.  (
0 [,] 1 )  /\  y  e.  ( A [,] B ) ) )  ->  (
x  =  ( ( y  -  A )  /  ( B  -  A ) )  <->  y  =  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) )
871, 19, 55, 86f1ocnv2d 6077 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005    |-> cmpt 4066   `'ccnv 4627   -1-1-onto->wf1o 5217  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130   # cap 8540    / cdiv 8631   RR+crp 9655   [,]cicc 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-rp 9656  df-icc 9897
This theorem is referenced by:  iccen  10008
  Copyright terms: Public domain W3C validator