| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccf1o | Unicode version | ||
| Description: Describe a bijection from
|
| Ref | Expression |
|---|---|
| iccf1o.1 |
|
| Ref | Expression |
|---|---|
| iccf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 |
. 2
| |
| 2 | 0re 8074 |
. . . . . . . . 9
| |
| 3 | 1re 8073 |
. . . . . . . . 9
| |
| 4 | 2, 3 | elicc2i 10063 |
. . . . . . . 8
|
| 5 | 4 | simp1bi 1015 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 6 | recnd 8103 |
. . . . 5
|
| 8 | simpl2 1004 |
. . . . . 6
| |
| 9 | 8 | recnd 8103 |
. . . . 5
|
| 10 | 7, 9 | mulcld 8095 |
. . . 4
|
| 11 | ax-1cn 8020 |
. . . . . 6
| |
| 12 | subcl 8273 |
. . . . . 6
| |
| 13 | 11, 7, 12 | sylancr 414 |
. . . . 5
|
| 14 | simpl1 1003 |
. . . . . 6
| |
| 15 | 14 | recnd 8103 |
. . . . 5
|
| 16 | 13, 15 | mulcld 8095 |
. . . 4
|
| 17 | 10, 16 | addcomd 8225 |
. . 3
|
| 18 | lincmb01cmp 10127 |
. . 3
| |
| 19 | 17, 18 | eqeltrd 2282 |
. 2
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | simpl1 1003 |
. . . . . 6
| |
| 22 | simpl2 1004 |
. . . . . 6
| |
| 23 | elicc2 10062 |
. . . . . . . . 9
| |
| 24 | 23 | 3adant3 1020 |
. . . . . . . 8
|
| 25 | 24 | biimpa 296 |
. . . . . . 7
|
| 26 | 25 | simp1d 1012 |
. . . . . 6
|
| 27 | eqid 2205 |
. . . . . . 7
| |
| 28 | eqid 2205 |
. . . . . . 7
| |
| 29 | 27, 28 | iccshftl 10120 |
. . . . . 6
|
| 30 | 21, 22, 26, 21, 29 | syl22anc 1251 |
. . . . 5
|
| 31 | 20, 30 | mpbid 147 |
. . . 4
|
| 32 | 26, 21 | resubcld 8455 |
. . . . . 6
|
| 33 | 32 | recnd 8103 |
. . . . 5
|
| 34 | difrp 9816 |
. . . . . . . 8
| |
| 35 | 34 | biimp3a 1358 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 36 | rpcnd 9822 |
. . . . 5
|
| 38 | rpap0 9794 |
. . . . . 6
| |
| 39 | 36, 38 | syl 14 |
. . . . 5
|
| 40 | 33, 37, 39 | divcanap1d 8866 |
. . . 4
|
| 41 | 37 | mul02d 8466 |
. . . . . 6
|
| 42 | 21 | recnd 8103 |
. . . . . . 7
|
| 43 | 42 | subidd 8373 |
. . . . . 6
|
| 44 | 41, 43 | eqtr4d 2241 |
. . . . 5
|
| 45 | 37 | mulid2d 8093 |
. . . . 5
|
| 46 | 44, 45 | oveq12d 5964 |
. . . 4
|
| 47 | 31, 40, 46 | 3eltr4d 2289 |
. . 3
|
| 48 | 0red 8075 |
. . . 4
| |
| 49 | 1red 8089 |
. . . 4
| |
| 50 | 32, 36 | rerpdivcld 9852 |
. . . 4
|
| 51 | eqid 2205 |
. . . . 5
| |
| 52 | eqid 2205 |
. . . . 5
| |
| 53 | 51, 52 | iccdil 10122 |
. . . 4
|
| 54 | 48, 49, 50, 36, 53 | syl22anc 1251 |
. . 3
|
| 55 | 47, 54 | mpbird 167 |
. 2
|
| 56 | eqcom 2207 |
. . . 4
| |
| 57 | 33 | adantrl 478 |
. . . . 5
|
| 58 | 7 | adantrr 479 |
. . . . 5
|
| 59 | 37 | adantrl 478 |
. . . . 5
|
| 60 | 39 | adantrl 478 |
. . . . 5
|
| 61 | 57, 58, 59, 60 | divmulap3d 8900 |
. . . 4
|
| 62 | 56, 61 | bitrid 192 |
. . 3
|
| 63 | 26 | adantrl 478 |
. . . . . 6
|
| 64 | 63 | recnd 8103 |
. . . . 5
|
| 65 | 42 | adantrl 478 |
. . . . 5
|
| 66 | 8, 14 | resubcld 8455 |
. . . . . . . 8
|
| 67 | 6, 66 | remulcld 8105 |
. . . . . . 7
|
| 68 | 67 | adantrr 479 |
. . . . . 6
|
| 69 | 68 | recnd 8103 |
. . . . 5
|
| 70 | 64, 65, 69 | subadd2d 8404 |
. . . 4
|
| 71 | eqcom 2207 |
. . . 4
| |
| 72 | 70, 71 | bitrdi 196 |
. . 3
|
| 73 | 7, 15 | mulcld 8095 |
. . . . . . 7
|
| 74 | 10, 73, 15 | subadd23d 8407 |
. . . . . 6
|
| 75 | 7, 9, 15 | subdid 8488 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5961 |
. . . . . 6
|
| 77 | 1cnd 8090 |
. . . . . . . . 9
| |
| 78 | 77, 7, 15 | subdird 8489 |
. . . . . . . 8
|
| 79 | 15 | mulid2d 8093 |
. . . . . . . . 9
|
| 80 | 79 | oveq1d 5961 |
. . . . . . . 8
|
| 81 | 78, 80 | eqtrd 2238 |
. . . . . . 7
|
| 82 | 81 | oveq2d 5962 |
. . . . . 6
|
| 83 | 74, 76, 82 | 3eqtr4d 2248 |
. . . . 5
|
| 84 | 83 | adantrr 479 |
. . . 4
|
| 85 | 84 | eqeq2d 2217 |
. . 3
|
| 86 | 62, 72, 85 | 3bitrd 214 |
. 2
|
| 87 | 1, 19, 55, 86 | f1ocnv2d 6152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-rp 9778 df-icc 10019 |
| This theorem is referenced by: iccen 10130 |
| Copyright terms: Public domain | W3C validator |